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Abstract

Face recognition attracts the attention of researchers since more than 35 years

and is still an unsolved research problem. This history reflects not only the com-

plexity of this task but also the strong interest in machine recognition systems,

which is mainly driven by the wide range of potential application areas.

In this diploma thesis, we design a combined face detection and identification

system based on SIFT descriptors.

We adapt the learning procedure of an existing face detection model using

an agglomerative clustering approach. For face identification, we propose a new

model using SIFT descriptors and the Object Class Invariant (OCI), which is

a scale and orientation invariant reference frame. We introduce a new feature

matching strategy based on this OCI, which efficiently reduces the number of

potential feature matches and false correspondences. This selection strategy

does not only incorporate the 2D image position but also the scale and the

angle of a feature. We systematically evaluate the impact of various similar-

ity measures on identification performance. The proposed face identification

method is evaluated on the large scale FERET face database and shows to be

competitive with other face identification methods such as SIFT-Cluster and

Local Binary Patterns. Furthermore, the OCI based identification model does

not require preprocessing steps such as histogram equalization or rasterization.

Labeling the OCI in an image is sufficient to identify faces invariant to scale

and in-plane rotation.

For the combination of face detection and identification, we experiment with

two different approaches: A loose coupling technique uses OCI information pro-

vided by the detector to define a scale and orientation invariant bounding box,

based on which features for face identification are selected. We also experiment

with a rather tight system combination strategy, which inspects only features

used for detection to identify a face.
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1 Introduction

1.1 Face Recognition

In computer vision, face recognition attracts the attention of researchers since

more than 35 years and is still an unsolved problem [ZCRP03]. This history

reflects not only the difficulty and complexity involved in automating this task,

but also the strong interest in machine recognition systems, which is mainly

driven by the wide range of potential application areas. The problem can be

generally stated as follows: Given a still image of a scene or a video frame of a

video camera, recognize faces of known individuals. This section highlights some

general aspects of face recognition and in particular with respect to computer

vision.

Application Areas

For law enforcement, surveillance, and authentication systems, automated face

recognition exhibits several particular characteristics which would make a re-

liable system based on distinctive facial traits favorable over other biometric

methods such as fingerprint or iris recognition:

Analyzing the image of a persons face is rather user-friendly and intuitive. It

could be done on the fly - without requiring (a great deal of) user interaction,

while for methods including iris scans or fingerprints a comparatively small

distance between the scan device and the user as well as his or her co-operation

are inevitable. This characteristic implies that face recognition systems do not

even rely on the participants knowledge. Considering the widespread use of

surveillance cameras in and around buildings or even in outside public areas1

today, such recognition systems could be deployed as an upgrade to already

existing infrastructure. It should be mentioned that new European passports

1i.e. C.C.T.V.
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1 Introduction

are equipped with face images and fingerprints of their holders, which renders

a centralized database of face templates for public applications more or less

unnecessary.

Besides security related scenarios, applications in other research areas would

greatly benefit from automatic face recognition. In the fields of virtual reality,

ubiquitous computing, human-computer-interaction/ human-robot-interaction

and entertainment, numerous useful and creative applications are imaginable.

Problem Complexity

In order to describe the difficulties involved in solving the face recognition prob-

lem in more detail, the following subdivision of this task will be shown to be

useful:

1. Given an image, detect and localize all faces in the scene.

2. For each detected face, resolve the name of the corresponding person or

mark it as unknown.

At first, we want to detect an unknown number of face occurrences and de-

termine their positions in a given image. Therefore, we need a general idea of

the appearance of a face independent of the underlying person. In the second

subtask on the other hand, the goal is to distinguish faces belonging to different

people, while recognizing faces corresponding to the same person as such. Hence

we need a model for the appearance of a face corresponding to a particular per-

son. Although the two subproblems deal with faces, intuitively their solutions

and thus the underlying models might be quite different. In terms of pattern

recognition and machine learning, the former task is a two class classification

problem, whereas the latter one is a multiple class problem each of them being

a member of the more general face category determined by the first subtask. In

fact, these two distinct problems are addressed separately in the literature, and

only a few particular methods are applied to both tasks, where one of them can

be solved as a by-product of solving the other.

In the remainder of this thesis we call the task of detecting and localizing faces

in a scene image face detection, and the task of finding the corresponding name

to a given face image face identification. The combination of face detection

and identification is called face recognition. A scenario, in which we wish to

2



1.1 Face Recognition

determine whether a face image belongs to one particular person is called face

authentication.

Existing techniques can be broadly grouped into two categories, based on

the features they extract, or more generally speaking, on the way they use the

information provided by the input image. Holistic methods treat the image

as a single high-dimensional vector of intensities - one dimension for each pixel

assuming gray scale images. Each image of the same size lies within this im-

age space. They proceed by reducing the dimensionality of the image space in

order to create a domain specific subspace (e.g. face space). Projecting a new

image onto this subspace, reveals characteristic information about the image

content. Well-known examples are Principle Component Analysis (PCA) and

Linear Discriminant Analysis (LDA), which - in the context of face recognition

- are termed Eigenfaces and Fisherfaces, respectively. Local/structural ap-

proaches extract characteristic local image features focussing on specific regions

of interest (e.g. eyes, nose and mouth), and define a geometric relationship be-

tween these parts of a face. One prominent representative for this category is

Elastic Bunch Graph Matching. An outline of these and other methods is given

in Chapter 2.

Although many different approaches to solving the face recognition problem

emerged during the past decades, unfortunately none of them works in an un-

constrained setting with acceptable2 accuracy. This is especially due to their

lack of robustness against a number of variations occuring in realistic scenarios:

Non-rigid geometric deformations arise naturally with a change of facial ex-

pression. The geometric relationships between parts of a face are not fixed and

hence more difficult to model than in the case of rigid objects. However, loose

geometric restrictions may be defined, which accept small variations. Changes

in the pose of a face relative to camera viewpoint, appearing as rotations and

translations in the image plane as well as in depth, result in a significantly

different face appearance. Additionally, the face texture and shape changes

with aging. Hence the face appearance of a specific person is subject to large

variations.

Partial occlusions in crowded scenes, through the use of eyeglasses or hats

and with facial hair escalate the incompleteness of face information provided by

an image. Therefore, parts based face models using collections of local features

2assuming an accuracy greater or equal to 99% is considered as acceptable
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1 Introduction

are particularly useful. Illumination varies with a change of camera position,

number, position(s) and kind(s) of light source(s) and considering the sun, illu-

mination changes occur solely with time (especially outdoors). Clutter in the

background complicates the separation of the face from the background (this

process is referred to as segmentation).

The union of these appearance variations is particularly challenging for the

face identification problem, in which members of different classes (i.e. faces of

different people) are rather similar. Hence, there is a strong need for models

which are able to cope with the large appearance variations of a person’s face

on one side, and distinguish faces of different people on the other side. However,

existing systems may already be used in environments less relevant to security.

A promising approach to using current face recognition techniques in security

related scenarios is to combine them with other authentication techniques such

as fingerprint [RK+07].

1.2 Interest Points

Interest points, also known as key points or corner points, are mathematically

well-defined image positions, whose surrounding image regions hold locally char-

acteristic information for the scene in an image. Interest point descriptors, which

are the features extracted at these points of interest, are designed to be stable

under certain image transformations such as scaling or rotation.

Consider an image showing an object on a black background. Then each in-

terest point descriptor extracted from this image describes the appearance of a

part of this object. Thus, the appearance of the whole object may be represented

by the whole set of features extracted from this image (in the following, this set

of features is called template). Therefore, methods based on interest point for

object recognition belong to the local/ structural approaches as defined above.

Now consider an image showing the same object in a more complex scene. Some

descriptors extracted from this scene image probably correspond to the object

in question. Depending on the robustness of an interest point descriptor, it is

possible to find feature correspondences - called feature matches - between the

image of the single object and the scene image. These feature correspondences

form the basis of very powerful applications. Interest point methods are applied

to 3D reconstruction, general object detection, object tracking and other prob-
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1.3 Goals

lems of computer vision, and showed exceptional performance. First attempts to

face detection and face identification suggest a similar potential in this domain.

Generally, an interest point method includes three modules: An extraction

method describing how to find key points in an image automatically, a descrip-

tion method defining which information is extracted from the local image region

around a key point, and a matching strategy, which describes how to find feature

correspondences between a pair of images.

In order to successfully recognize an object (e.g. a face) in a scene image, it is

not necessary to find feature correspondences for all template features. There-

fore, these methods perform well on occluded objects. As interest point descrip-

tors are more or less robust against certain image transformations, objects may

also be recognized in images taken under different illumination conditions and

partially from different perspectives. Furthermore, an object appearing bigger

or smaller in a new image or with a different orientation may be recognized

successfully. However, this invariance to certain viewing conditions strongly

depends on the particular interest point method in use. In Section 2.3 we will

introduce some of these methods and approaches to object and face recognition

based on these methods.

The positive characteristics of methods based on interest points discussed

above, as well as the evaluation results of first interest point based approaches

to face recognition, motivate to further explore the potential of these methods.

1.3 Goals

The main goal of this diploma thesis is to design and implement a combined face

detection and identification system exclusively based on interest point methods.

This goal will be approached in three steps:

At first, we adapt an existing face detection model using SIFT descriptors.

Then, we will carefully design a new face identification model, which facilitates

a seamless integration of both models to a fully functional face recognition

system. In this context, we will systematically investigate the impact of various

similarity measures on identification performance, in order to determine the best

similarity measure for this identification system. The final step will be to define

a system combination technique.

All of these models - the detection model, the identification model and the
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1 Introduction

combined recognition model - will be evaluated under various viewing condi-

tions, in order to determine particular strengths and weaknesses of our models.

The remainder of this diploma thesis is organized as follows: Chapter 2 re-

views related work on face detection, face identification and particularly interest

point based methods for object detection, face detection and face identification.

Chapter 3 describes our adaptation of the detection model, the new identifi-

cation model and two types of system combination techniques. In Chapter 4

evaluation results on the large scale FERET face database are presented and

discussed. Chapter 5 concludes and outlines directions for future work.

6



2 Related Work

This chapter introduces a few representative examples of approaches to face

detection and face recognition and discusses their relative advantages and draw-

backs. As we have seen in Section 1.1, all of these methods can be generally

grouped into holistic and local/structural approaches. Though keeping this cri-

terion to some extent, this chapter emphasizes a categorization of proposed

solutions based on the problem they address. In the special case, where a tech-

nique relates to multiple problems, it is introduced in the context of the first,

and we state explicitly how it is used for solving the other one. Underlining the

importance of methods based on interest points for this thesis, a dedicated sub-

section will review these approaches in detail. In this context, a review of object

detection methods is also provided, as most of the techniques have initially been

applied to general objects and many of them have not been evaluated in the

face recognition domain.

2.1 Face Detection

Face detection is the task of detecting an unknown number of faces in an image

and provide a description of their respective locations. Generally, the location

of a face is defined by a bounding box around the face region. In this section

we introduce a few existing approaches and we refer the interested reader to

[Hje01] for a more detailed survey.

2.1.1 Holistic Approaches

Holistic methods for face detection intend to decide, whether the inspected

image region represents a face or not. Since the input to a face detector is a

scene image, which usually contains more than just a single face (e.g. objects in

the background, other parts of the body or other faces), holistic face detection

7
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is performed on a (possibly high) number of windows/ sub-regions of the image.

For example, we could define a fixed width and height of a face and inspect for

each pixel in the scene image a window with the predefined size centered at this

pixel. For each of these regions, the detector decides whether this particular

region represents a face or not. This way, we can localize a face and describe

the face location by the pixel position of the center of the inspected region, or

by the rectangular region itself.

The problem of deciding whether a region represents a face is a standard

two-class classification problem. The image region is simply interpreted as a

single high dimensional vector, each dimension representing the intensity of a

particular pixel. The whole space of images is called image space. Several

standard techniques, such as neural networks [RBK98], support vector machines

[OFG97] and principle component analysis [SK87] have been applied to describe

the subspace of images representing faces - the so called face space.

In this section we introduce the Eigenface approach, which is based on prin-

ciple component analysis [SK87]. The Eigenface approach is a rather simple

representative of holistic methods.

Eigenfaces

Interpreting images as vectors enables us to perform mathematical operations

on whole images. Considering a set of face images {Ii}, i = 1, · · · , N , we can

compute the average face as

µface =
1

N

N∑

i=1

Ii (2.1)

For each sample face Ii, we can estimate the difference Di to the average face

µface

Di = Ii − µface, (2.2)

which allows us to describe the covariance matrix of the face distribution in

image space: Using the difference matrix D = (D1, · · · , DN), the covariance

matrix is is defined as

Covface = DDT , (2.3)

8



2.1 Face Detection

where T denotes matrix transposition. We compute the eigenvectors of this

covariance matrix, which have the same dimensionality as the sample face im-

ages. Therefore, these eigenvectors may be interpreted as images and are called

Eigenfaces. The eigenvalue describes the variance of the distribution in the

direction of the corresponding eigenvector. The face space may therefore be

sufficiently described by the Eigenfaces Ej corresponding to the top M eigen-

values; the principle components of the distribution. This set of Eigenfaces

Ej , j = 1, · · ·M forms the face model.

Detection: A test image Itest may - after subtracting the average face µface -

be represented as a linear combination of Eigenfaces Ej and a residual error R:

Dtest =

M∑

j=1

wj · Ej +R (2.4)

This remainder R accounts for the fact that we use only the top M Eigen-

faces to model the face space. The squared length of the vector R is called

distance from face space (DFFS) and may be interpreted as the non-faceness of

a test image. Therefore, the decision of whether an image represents a face is

performed by thresholding this non-faceness:

face = (R2 < T ), (2.5)

where T is the threshold separating faces from non-face images. All images,

which may be represented as a linear combination of Eigenfaces and have a

sufficiently small residual error are considered as showing a face, while all other

images are rejected.

Identification: The face model introduced above can also be efficiently used

for face identification. In this case we focus on the weights wi in Equation (2.4)

rather than the residual error R: A face image Ii of a subject i in a face space

defined by Eigenfaces Ej , j = 1, . . .M,E = (E1, · · · , EM) is a point in this

M-dimensional space. This point Wi is calculated as follows:

Wi = EtDi, (2.6)

9
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which is simply the projection of Di onto the face space defined by E. This

M-dimensional vector Wi is used to represent the face of a subject as a tem-

plate in the database. For a face image Itest, which is intended to be identified,

the corresponding weight vector Wtest is calculated using Equation (2.6). The

similarity between a test image represented by Wtest and a known subject rep-

resented by Wi is defined as the Euclidean distance between these vectors. The

face of subject i whose representation Wi has the minimum distance to Wtest is

considered as being present in the test image.

Although this method is very efficient in the detection/ identification stage in

terms of computation time, the approach has several drawbacks: Constructing

the face space demands a very large number of training images and a lot of

computation time. Furthermore, all face images have to be of the same size and

frontal. The accuracy of a detection and identification system using Eigenfaces

strongly depends on the number M of principle components used to define the

face space. Belhumeur et al. show in [BHK97] that the Eigenface method is

particularly sensitive to illumination variations, which can be avoided to some

extent by removing the first three principle components (i.e. the eigenvectors

with highest eigenvalues). Detection based on Eigenfaces is rather slow consid-

ering the large number of possible subregions of a scene image.

2.1.2 Local Features for Face Detection

The most prominent approach to face detection using local features has been

proposed by Viola and Jones in [VJ01]. Their method inspects subregions of

the input image at different positions and scales. Thus, the detector is able to

detect faces of different sizes and decides for each subregion individually whether

there is a face present or not. The features used are combinations of simple box

filters, which are fast to compute on the integral image. The integral image

IΣ is defined as IΣ(x, y) =
∑i<x

i=0

∑j<y
j=0 I(x, y), where I(x, y) denotes the input

image. Using this representation of an image, a box filter can be computed in

constant time, independent of the size of the rectangular regions (boxes) and

the scale at which a window is evaluated.

Each such feature fi in combination with a threshold ti and a parity pi con-

stitutes a weak classifier : A window is accepted as a potential face if

pot face = (pifi < piti) (2.7)

10



2.1 Face Detection

is true. The parity pi is either 1 or -1 and indicates the direction of the inequal-

ity sign. Multiple such weak classifiers are combined to form a strong classifier.

Several strong classifiers are arranged in a so called cascade. A window is eval-

uated using the first strong classifier. If the window is classified as a potential

face, it is evaluated using the next classifier. Otherwise it is discarded. This

detector design using a series of classifiers allows to rapidly discard subregions

of the input image which do not show a face. A face region is only accepted

as such, if it passes the whole series of classifiers. Therefore, the cascade is

designed to reject most non-face regions based on a very small number of simple

features. For the construction of strong classifiers, the authors use the iterative

AdaBoost algorithm proposed by Freund and Schapire in [FS95]. Based on a

set of face and background training images and a set of features, this algorithm

selects the feature, which has the lowest misclassification rate when used as a

weak classifier (see Equation (2.7)). In each iteration t = 1, . . . , T , all remain-

ing features are evaluated on the subset of training images which have not yet

been correctly classified and the best feature ft is added to the strong classifier.

The algorithm terminates, when a predefined classifier performance criterion is

reached. Once the strong classifier in one stage of the cascade is trained, the

AdaBoost algorithm is re-initialized with the remaining set of features, all face

training images and the subset of background training images, which have not

been rejected by any classifier in an earlier stage of the cascade. As a result of

this approach, classifiers in early stages are rather simple (i.e. containing a lower

number of less complex features), as the whole set of face images may rather

easily be separated from the whole set of background images. In later stages of

the cascade however, background images which have not yet been rejected are

more similar to faces, and therefore classifiers in late stages contain a higher

number of more complex features.

The authors report results of a face detector containing 36 stages and a total of

6000 features on the MIT-CMU database1. This detector achieves 88% recall at

93% precision. Unfortunately the authors do not state under which conditions

a detected face is considered as being correctly localized. In addition to this

high accuracy, the detector demands a small amount of computation time. The

authors state that the algorithm processes an image of (384 x 288) pixels at

a framerate of about 15 Hz on a 700 Mhz Pentium III processor. Note that

1Available at: http://vasc.ri.cmu.edu//idb/html/face/frontal images/index.html
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similarly to the Eigenface approach, this method for face detection is single

view point in nature. All faces are required to be upright and frontal. The

effects of different viewing conditions such as illumination variations and facial

expressions on detection performance have not been systematically evaluated.

2.2 Face Identification

Considering the long history of research conducted on face identification, it is

simply impossible to give a comprehensive overview of existing methods and de-

scribe them in an understandable way in the context of this thesis. We therefore

concentrate on a few representative examples and refer the interested reader to

[ZCRP03] for a more general and extensive introduction.

2.2.1 Holistic Approaches

The most basic holistic method (Eigenfaces) for face identification has already

been introduced in the context of face detection in the previous section. This

approach reduces the dimensionality of the whole image space to a much lower

dimensional face space, while preserving the maximum variance of face images,

by choosing the eigenvectors with the largest eigenvalues of the covariance ma-

trix of the distribution of face images. Although this approach is optimal with

respect to dimensionality reduction, it is not the most appropriate technique

to construct a face space which is intended to be used to distinguish faces of

different individuals [BHK97]. This is due to the fact that this method does

not only preserve the appearance variance between faces of different individu-

als, but also variation due to changing illumination conditions and expression

variation of the same face. As a result, different images of the same face are

not necessarily closer to each other in this feature space than images of different

faces. Thus, one may define a different method for constructing the face space,

incorporating the information of whether variance is caused by face images of

different subjects or images of the same face under different viewing conditions.

This idea has been followed by Belhumeur et al., who propose in [BHK97]

the so called Fisherfaces. The name is derived from the underlying general

classification technique called Fisher’s Linear Discriminant (FLD), which has

initially been applied to taxonomic classification in [Fis36].

12



2.2 Face Identification

Let the set of training images for a single subject be Xi = {Ij} and the whole

set of training images be X = Xi, i = 1, · · · , C, containing N images in total.

For each subject i, we can estimate the mean appearance µi and the covariance

matrix Covi using Equations (2.1), (2.2) and (2.3). Similarly we estimate the

average face µ from the whole training set.

Then the within class scatter is defined as

SW =
C∑

i=1

Covi (2.8)

and the between class scatter is defined as

SB =

C∑

i=1

|Xi| · (µi − µ)(µi − µ)T , (2.9)

where |Xi| denotes the number of sample images for subject i. Using these

scatter matrices, the basis vectors for the face space F : (F1, · · · , Fm), which

we denoted E : (E1, · · ·Em) in the context of Eigenfaces, are determined as to

maximize the ratio of between class scatter to within class scatter:

Fopt = argmaxF
|F TSBF |
|F TSWF | , (2.10)

where |F | denotes the determinant of the matrix F . The solution to this problem

is given by

SBF = SWFA, (2.11)

where A is a diagonal matrix of the corresponding generalized eigenvalues.

The M vectors Fi with largest generalized eigenvalue are the Fisherfaces. In

order to find the solution to Equation (2.11), we need to compute the inverse

of SW . This matrix is singular if the number of pixels in the image (the di-

mensionality of the image space) is higher than N −C (the number of training

images minus the number of subjects), which is generally the case. Therefore,

the authors propose to reduce the dimensionality of the image space using Prin-

ciple Component Analysis (as described in the previous section) and apply the

proposed method to images in this reduced image space.

Evaluation results for this approach are presented in the context of our evalua-

tion in Chapter 4.3. Like Eigenfaces, Fisherfaces need a large number of training

13
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images. Furthermore, this approach requires multiple images per person. An-

other commonality of these approaches is that they assume faces are aligned,

of the same size, upright and frontal. However, identification performance is

shown to be very robust under changes in illumination and facial expression.

This method is one of the most elaborated holistic approaches to face identifi-

cation.

2.2.2 Local/ Structural Methods

In this section, we introduce Elastic Bunch Graph Matching and Local Binary

Patterns, with which we are going to compare our evaluation results.

Elastic Bunch Graph Matching

Elastic Bunch Graphs have been proposed by Wiskott et al. in[WFKvdM97].

This local feature method takes particularly geometrical relationships between

features into account.

Features of training images are extracted at predefined, labeled face locations

(e.g. eyes, tip of the nose or corners of the mouth). A single feature, called jet,

consists of 40 complex coefficients obtained by convolving the point in question

with 40 Gabor filters [Dau88]. Gabor filter responses are similar to the response

of the human cortical receptive field and remove most of the variation caused

by small lighting changes and local deformations. Thus, a representation based

on Gabor filters is to some extent invariant to these variations.

The jets represent the nodes in a face graph. The arcs of this graph are labeled

with the distance between the nodes. The whole set of face graphs constructed

from training images is combined to a face bunch graph. The arcs are set to

the average distance of all corresponding arcs in face graphs, and each node of

the bunch graph represents a whole bunch of jets: ”‘An eye bunch, for instance,

may include jets from closed, open, female and male eyes [...]”’[WFKvdM97].

This bunch graph forms a general face appearance model.

The face of a particular subject is represented by the combination of one

jet at each point and the person specific distances between these points. The

face graph extracted from a test image is then matched to all face graphs in

the database in order to determine the highest similarity. The graph similarity

measure takes two factors into account: the jet similarity and the geometrical
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distortion. The subject corresponding to the graph in the database with highest

similarity to the graph extracted from the test image is considered as being

present in the image.

This approach is very flexible and allows to represent faces efficiently. For

learning of the face bunch graph, a rather low number of training images com-

pared to Eigenfaces and Fisherfaces is necessary. Furthermore, a subject may

be learned for identification based on a single image.

Local Binary Patterns

The use of Local Binary Patterns (LBP) in the context of face identification

has been initially proposed by Ahonen et al. in [AHP04]. LBPs are simple yet

descriptive features: The intensities of pixels in the neighborhood of an image

position are thresholded by the intensity at the inspected image position. The

concatenation of these binary filter responses forms the local binary pattern.

These features are extracted for all pixels in the image. Let F (x, y) denote the

LBP at image position (x, y).

A circular neighborhood is defined by a pair (N,R) describing the number

of positions N and the distance R of these image locations from the center.

Intensities at image positions in between pixels are bilinear interpolated. The

total number of possible patterns is 2N . This number is reduced by only con-

sidering so called uniform patterns. ”A Local Binary Pattern is called uniform

if it contains at most two bitwise transitions from 0 to 1 or vice versa when the

binary string is considered circular.”[AHP04]. All patterns which do not hold

this condition are discarded. Let P be the total number of possible patterns

Local Binary Patterns describe the local structure in the image on a pixel

level. In order to describe the image content on a higher level, the whole image

is divided into M subregions R1, · · · , RM . For each region j = 1, · · · ,M , a

histogram of patterns is computed as follows:

Hij =
∑

(x,y)∈Rj

1[F (x, y) = i], (2.12)

where 1[expression] is one if the expression is true and zero otherwise. The

histogram entry Hij counts the number of occurrences of pattern i in image

region j. The histogram of region j, Hj : (H1j, · · ·HPj) thus describes the

occurrences of all patterns in region j. This histogram represents the image
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content on the level of an image region. The concatenation of regional his-

tograms H : (H1, · · ·HM) forms the whole image representation. Therefore, the

content of an image is described by M · P values.

For matching a pair (A,B) of such image descriptions (i.e. a description

derived from a test image with a description representing the face of a known

individual in the database), the authors define three similarity measures.

Histogram intersection:

D(A,B) =
M∑

j=1

P∑

i=1

min(Aij , Bij) (2.13)

Log-likelihoood statistic:

L(A,B) = −
M∑

j=1

P∑

i=1

Aij logBij (2.14)

Chi square statistic:

χ2(Aij, Bij) =
M∑

j=1

P∑

i=1

(Aij − Bij)
2

Aij +Bij

(2.15)

The authors evaluate the proposed method on the CSU Face Identification

Evaluation System [BBTD03] using different neighborhood sizes and different

numbers of subregions, with the result that a neighborhood (8, 2) with a region

size of 18x21 pixels on 130x150 pixel images may be the best trade-off between

descriptor length and identification performance. Comparative evaluation of

similarity measures failed to identified one which performs better than the others

in all experiments. Yet, the χ2 method performs best in most experiments. The

authors further propose to weight the contribution of a subregion in (2.15) by

its descriptiveness:

χ2(Aij , Bij) =

M∑

j=1

P∑

i=1

wj
(Aij − Bij)

2

Aij +Bij
, (2.16)

where wj denotes the weight for subregion j. In order to determine these

weights, the individual identification rate of each subregion is evaluated, aver-

aging the result of corresponding subregions on the left and right half of the

face. Regions obtaining less than 0.2 true positive rate are discareded. Weights

for regions with a higher true positive rate than 0.8 and 0.9 are set to 2.0 and
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4.0, respectiveley. All other regions get weight one. Incorporating this weighting

scheme significantly ( ¿ 4 %) increases the true positive rate on all evaluation

sets. Detailed evaluation results will be presented in the context of the evalua-

tion of our model in Section 4.3.

2.3 Methods Based on Interest Points

This section focusses on interest point extraction, description, and matching

techniques and introduces some (probabilistic) models for object and face recog-

nition based on these descriptors. First, we examine methods based on interest

points in the area of object detection, as these techniques have initially been

applied to general objects.

2.3.1 Object Detection

Interest Point Descriptors

The most popular interest point methods are the Scale Invariant Feature Trans-

form (SIFT), proposed by Lowe in [Low04], and Speeded Up Robust Features

(SURF) introduced in [BTG06]. As these two methods will be relevant for our

introduction of face identification techniques in Section 2.3.2, we will describe

them here in some detail.

Scale Invariant Feature Transform SIFT descriptors are invariant to changes

in scale and in-plane orientation as well as to a wide range of other affine trans-

formations of the local image region around the interest point. They are also

partially robust to changes in illumination and 3D viewpoint change.

Interest points are localized at extrema of the Difference-of-Gaussian (DoG)

scale-space.. Let I(x, y) be the input image and G(x, y, σ) a Gaussian with

variable standard deviation σ. The scale-space is defined as the function

L(x, y, σ) = G(x, y, σ) ∗ I(x, y) (2.17)

and the Difference-of-Gaussian is defined as

D(x, y, σ) = L(x, y, kσ)− L(x, y, σ) (2.18)
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for two nearby scales. A pixel with maximal or minimal value in its 26-

neighborhood across scales is considered as a potential interest point. Positions

with low contrast or with a high edge response are removed. A detailed fit to

the nearby data locates the keypoint to sub-pixel accuracy and reveals further

unstable locations.

In the next stage, a distinctive orientation is assigned to each keypoint using

gradient orientations of pixels in the local image region. The final descriptor

is extracted relative to this orientation, which makes it invariant to in-plane

rotation. The gradient orientations and magnitudes of the 16x16 image region

around the keypoint (relative to the assigned orientation) are used to construct

a smoothed 4x4 array of orientation histograms with 8 bins each. These 4x4x8

histogram bins form the 128-dimensional SIFT feature vector. Finally this vec-

tor is normalized, which makes it to some extent robust to changes in contrast.

In summary, extracting interest points at scale space extrema makes them in-

variant to changes in object size. Descriptors relative to a distinctive orientation

ensures invariance to rotation in the image plane. Using gradient information of

the local image region makes the descriptor invariant to a bias in illumination

and vector normalization provides some invariance to changes in contrast. Be-

sides this feature vector describing the appearance of the local image region, the

feature geometry (i.e. 2D position in the image, scale and angle) is associated

with its descriptor, which allows for determining a geometrical transformation

of matching features (and of the underlying objects) across images.

Matching SIFT features is performed as follows: Consider a database of object

templates, each described by a set of features {f}tempi and a set of test features

{f}test. For each test feature, we identifiy the closest database feature based on

Euclidean distance. Let the corresponding object template be tempi. In order

to discard unstable feature matches, the minimum distance to features corre-

sponding to any other object template tempj , j 6= i is compared to the actual

minimum distance. If the distance ratio of the closest and the second closest

feature match exceeds a certain threshold, the match is considered to be un-

stable. Hence, this individual feature matching stage identifies unique matches

between test features and features of object templates. In order to verify the

hypothesis for a specific object template, each feature votes for any object pose

which is consistent with its feature match. An object pose is furtherly verified

using the Hough transformation.
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The robustness of SIFT descriptors to image deformations has been confirmed

by Mikolajczyk and Schmid, who examined different local descriptors in their

comparative evaluation presented in [MS05].

Ke and Sukthankar use SIFT’s method for interest point selection and ori-

entation assignment in [KS04] and propose a different description method for

the local image information based on Principle Component Analysis. They use

horizontal and vertical gradients of 41x41 pixels around the keypoint location

and project this gradient map onto a precomputed 40-dimensional eigenspace.

Evaluation shows that this so called PCA-SIFT method outperforms standard

SIFT in controlled matching tasks. Matching using PCA-SIFT is much faster

due to the lower dimensional feature descriptors. The evaluated settings con-

tained only planar and rigid objects. Considering the large image region used

by PCA-SIFT and the lack of robustness of PCA against non-rigid deforma-

tions, it is questionable whether this method compares equally well in the face

recognition domain, since the smoothed nature of standard SIFT descriptors

suggests a higher tolerance to this kind of variations.

Speeded Up Robust Features Bay et al. propose another interest point

detection and description method [BTG06]. As the name suggests, the main

goal was to design a descriptor which is faster to extract and is comparably

robust as SIFT features. Rather than approximating the Laplacian with a

difference-of-Gaussian as done by the SIFT method, SURF approximates Gaus-

sian second order partial derivatives using box filters. This type of convolu-

tion filters is very fast to compute in the integral image, which is defined as

IΣ(x, y) =
∑i<x

i=0

∑j<y
j=0 I(x, y). The computation time of box filter responses in

the integral image is O(1). While for the Gaussian scale-space used by SIFT

it is necessary to iteratively convolve the input image with a Gaussian filter of

increasing size and to subsample the image for each octave, the box filters used

here are not applied iteratively and thus can be computed in parallel. Further-

more, with this approach it is not necessary to subsample the input image, as we

can simply increase the size of the box filters with no additional computational

cost.

Interest points are located at local maxima of the determinant of the Hessian

matrix. The sign of the Laplacian (i.e. the trace of the Hessian matrix) holds

the information whether we detect a dark blob on a bright background or a
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bright blob on a dark background. This information is used in the matching

stage to only match similar features, which significantly reduces matching time.

An orientation is assigned to each keypoint location using Haar wavelet re-

sponses in the local image region, which are simply another type of box filters.

Let dx be the Haar wavelet response in horizontal direction and dy the Haar

wavelet response in vertical direction. The final descriptor is extracted based

on the Haar wavelet responses in the 20x20 local image region centered at the

keypoint location and rotated to the assigned orientation. This region is split

up into 4x4 subregions. Each subregion contributes a four component vector

v = (
∑

dx,
∑

dy,
∑ |dx|,

∑ |dy|) to the interest point descriptor, resulting in a

64-dimensional feature vector. Finally this vector is normalized.

The authors propose two other versions of their descriptor. An upright version

called U-SURF, which skips the orientation assignment step, resulting in an even

lower computation time. Note that this descriptor is no longer invariant to in-

plane rotation. The SURF-128 descritpor is an augmented SURF feature vector

with enhanced robustness. The sums of dx and |dx| are computed separately

for the cases dy < 0 and dy ≥ 0. Similarly, the sums of dy and |dy| are split up,

yielding a 128-dimensional feature vector.

Matching as described in [BTG06] is performed similarly to the SIFT match-

ing strategy. As mentioned above, the sign of the Laplacian is used to sig-

nificanlty reduce potential feature matches. Based on Euclidean distance, the

closesd feature match as well as the second closesd feature match arising from

a feature of a different object template are computed. Their ratio is compared

to a global threshold to remove unstable feature matches. The template ob-

ject having the most feature correspondences is considered to be detected. The

authors did not incorporate any geometrical constraints or verification meth-

ods ”‘as these may hide shortcomings of the basic schemes”’[BTG06] in their

comparative evaluation.

Evaluation showed that the detection and extraction of SURF descriptors

is about three times faster than detecting and extracting the same number of

SIFT descriptors. The authors also compared their descriptors with SIFT in

an object recognition task. The database consisted of 216 images of 22 objects

of art in a museum. The test set consisted of 116 image taken from the same

objects under different lightning conditions and viewing angles. The augmented

SURF-128 descriptor performed best (85.7% recognition rate), followed by U-
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SURF (83,8%), SURF (82,6%) and SIFT (78,1%). We will adress the question

whether this result of a single rigid object recognition task is transferable to the

face recognition domain in Section 2.3.2.

Probabilistic Models for Object Recognition

Several probabilistic models based on constellations of object parts or inter-

est point descriptors have been proposed in the literature (e.g. [Sch99, PL00,

FFFP03, MMP04, MLS06]). This section aims to identify common characteris-

tics and to outline a general approach.

The use of probabilistic models for object recognition is motivated by two

main factors: The appearance of an object in an image is always subject to

some variability. Instead of restricting the allowed variability of a feature cor-

respondence by a global and arbitrarily defined threshold, probabilistic models

offer the possibility to learn the appearance variance for each feature individ-

ually from data. Secondly, the confidence (or uncertainty) with respect to an

object detection can be expressed in an elegant way by probabilistic object

models.

Given a set of observed features in a test image {f}test, we wish to express

the probability of an object oi: P (oi|{f}test). A generative model, which tries

to describe the scene defined by {f}test using knowledge about the object oi,

can be obtained using Bayes theorem:

P (oi|{f}test) =
P ({f}test|oi)P (oi)

P ({f}test) (2.19)

The term P (oi) is the prior probability of the object. As we generally do not

expect to detect one object more frequently than another in a multiple object

setting, this probability is constant. The denominator P ({f}test) is a normal-

ization coefficient ensuring that P (oi|{f}test) is a valid probability distribution.

Hence this term is negligible. The focus of the model lies therefore on the term

P ({f}test|oi), which describes the posterior probability of the set of test fea-

tures given the object oi. This probability distribution needs to be derived from

data. The authors of all afore mentioned articles assume conditional feature in-

dependence given the object, which significantly reduces the model complexity.

21



2 Related Work

Making this assumption, the probability simplifies to

P ({f}test|oi) =
J∏

j

P (f test
j |oi), (2.20)

the product of (independent) feature probabilities over all test features f test
j ,

j = 1, . . . J . The conditional feature probability given an object takes several

aspects into account: The appearance probability of a feature describes the like-

lihood of a model feature having the observed appearance. This probability

describes to some extent the quality of a feature match. Taking SIFT descrip-

tors as an example, the appearance probability models the likelihood of a 128-

dimensional SIFT descriptor of a model feature having the form of the observed

SIFT descriptor. The geometrical probability describes the geometrical distribu-

tion of a model feature. Given the hypothesis of a specific object being present

in the test image at a specific location, the geometrical occurrence probability

distribution is used to verify whether the feature location is consistent with the

current object location hypothesis. On the other hand, given a match of a test

feature with a model feature, the geometrical distribution is used to infer object

locations in the image. The third common aspect taken into account is the

feature occurrence probability. If a feature occurs in many training images for

a given object, it is more likely that a matching test feature observed in a new

image accounts for this object than for unrelated clutter. These observations

lead to the following general formulation for the probability of a feature given

an object:

P (fj|oi) = Pappearance(fj |oi)Pgeometry(fj |oi)Poccurrence(fj |oi) (2.21)

Appearance Clustering The different approaches in the literature mainly dif-

fer in their way of obtaining/ identifying feature appearance clusters, which are

distinctive for a specific object. Pope and Lowe propose in [PL00] a multi-view

object model, which is basically a two tier clustering approach. For each object

class, they construct feature graphs for distinct views of an object. In each of

these graphs, features which are similar in appearance and geometry are merged

to form a model feature. A problem with this approach arises with model fea-

tures which are similar in appearance and geometry and belong to different view

graphs. In this case, the conditional feature independence assumption is invalid,
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which artificially increases the probability of an object given the test feature if

this situation is ignored.

Mikolajczyk et al. propose in [MLS06] a hierarchical tree structure for ap-

pearance clusters. This tree of appearance clusters is constructed from all train-

ing features of all training objects using an agglomerative clustering technique.

Clustering starts with each training feature as a potential appearance cluster.

Iteratively, the two clusters with minimum distance of their respective cluster

centers are merged if this distance does not exceed a certain threshold. This

threshold is chosen to be relatively small for the clusters which form the leafs of

the tree, and is incrementally increased to construct the appearance tree. Each

leaf node holds the parameters of the object specific appearance and geometry

distributions. This structure definitely accelerates matching time, but on the

other hand it is questionable whether this approach allows the identification

of appearance clusters which are distinct for object classes and feature geome-

tries. Unfortunately the authors do not mention how they efficiently model the

geometrical distributions given an object, which may take by construction an

arbitrary form.

Recognition Recognition using this kind of generative model is the task of

finding an object or a collection of objects which best describes the scene (i.e.

the observed features in the test image) or to decide that there is no known

object present. An hypothesis is a set of correspondences of observed features

to model features. In order to find the best hypothesis, we theoretically need to

evaluate all possible hypothesis. In an example case (taken from [Sch99]), where

we extract 100 test features and we obtain 10 possible correspondences for each

test feature, we would have to evaluate 10100 hypothesis. As this evaluation is

infeasible, the authors propose different heuristics for hypothesis construction

intending to find a good hypothesis with high probability.

C. Schmid constructs 2000 hypothesis and sums the scores obtained for each

object class over all hypothesis. Unfortunately she does not state in [Sch99], how

these hypotheses are constructed. All she mentions is that these constructed hy-

potheses have a high probability of resulting from true feature correspondences.

Pope and Lowe prioritize in [PL00] features with high occurrence probability

and high geometrical distinctiveness in order to identify some few initial corre-

spondences. These matchings are used to determine an initial model pose in the
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test image using a similarity transformation. Based on this model pose, further

features are matched and the pose of the model recalculated.

Moreels et al. follow a similar iterative hypothesis construction approach in

[MMP04]. They use a greedy approach to construct partial hypothesis (i.e.

hypothesis where features are neither assigned to a model feature nor to the

background), iteratively extending the most promising partial hypothesis.

In summary, there does not seem to exist a single most effective way to obtain

a good correspondence set between test features and model features.

The final decision of whether an object is present in the scene is straight

forward. If there is no model for the background, an object is considered to be

present if its probability in a given hypothesis exceeds a predefined threshold.

In the case where a background model exists, an hypothesis can be tested using

the Bayesian decision ratio

γ(oi) =
P (oi)

P (bg)

P (oi|{f}test)
P (bg|{f}test) , (2.22)

where bg denotes the background model and P (oi) and P (bg) are the prior

probability of the object oi and the background. This ratio of prior probability

can be set by hand to influence the true versus false detection rate. If γ(oi) is

greater than one, the object oi is considered to be detected in the test image.

2.3.2 Face Identification

This section reviews some approaches to using SIFT and SURF feature descrip-

tors for face identification.

Face Authentication with SIFT

In [BLGT06], Bicego et al. conduct a first systematic investigation of the appli-

cability of SIFT for face authentication systems. Recall that face authentication

is to determine whether a given face image corresponds to one particular person

in the database. They compared three different matching schemes:� Minimum pair distance matching� Matching features around the eyes and the mouth� Matching on a regular grid with overlapping subregions
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Minimum pair distance matching: Let {fi}test, i = 1, . . . , M , be the set of

features derived from the test image and {fj}temp with j = 1, . . . , N be the set

of features corresponding to a single person specific template from the database.

The minimum pair distance measure is defined as

DMPD({fi}test, {fj}temp) = mini,j(d(f
test
i , f temp

j )), (2.23)

where d(a, b) denotes the euclidean distance between two 128-dimensional

SIFT descriptors. A match is accepted or rejected based on a threshold t >?

DMPD.

Matching features around the eyes and the mouth: Based on labeled land-

marks in the test and template images, the minimum pair distances are com-

puted for features corresponding to the eyes and the mouth separately. The

final distance measure is derived from averaging these two measures, resulting

in the formula

DEM({fi}test, {fi}temp) =
1

2
DMPD({fi}testeyes, {fj}temp

eyes )

+
1

2
DMPD({fi}testmouth, {fj}temp

mouth), (2.24)

where {f}eyes and {f}mouth are the subsets of {fi}test and {fj}temp corre-

sponding to the eyes and the mouth, respectively. Note that these subsets or

the image regions from which the subsets are built, need to be labeled for all

template and test images.

Matching on a regular grid In order to perform matching on a regular grid,

it has to be assumed that images are aligned. This matching strategy computes

distances for all pairs of corresponding subregions r = 1, . . . , R, and averages

the result.

DGRID({fi}test, {fj}temp) =
1

R

R∑

r=1

DMPD({fi}testr , {fj}temp
r ), (2.25)
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Evaluation These matching strategies have been evaluated on the BANCA2

database using the matched controlled protocol involving 52 subjects. During

preprocessing, all images were aligned and their intensity histograms were nor-

malized. For each person, 5 images have been used for training and 7 images

for testing. In this experiment, matching on a regular grid performed best with

an equal error rate of 8.43%, followed by matching eyes and mouth (11.54%)

and minimum pair distance matching (13.74%). For regular grid matching, the

image was divided into (4x × 2y) = 8 subregions. The overlapping was set to

25%.

Note that regular grid matching requires some amount of image registration

and that matching the eyes and the mouth depends on accurately labeling or

automatically localizing areas corresponding to these face features.

SIFT Cluster

Luo et al. refined the approach of matching corresponding face regions us-

ing SIFT in [LMT+07]. They divide the face image into five subregions using

the K-means clustering technique [Mac67]: SIFT features are extracted from

registered and aligned training images. Five cluster center locations (i.e. 2D co-

ordinates) are initialized with random values within the registered image space.

Each training feature is assigned to the cluster whose center is closer to the

feature location than all other cluster centers using Euclidean distance. After

this assignment phase, all center locations are updated to the mean positions

of their assigned features. Hence features may be assigned to different clusters

in the next iteration. Therefore, this process is iterated until cluster centers

remain unchanged. The resulting subregions in the image are the basins of at-

traction of these clusters. Each extracted feature from a test image is assigned

to one of these subregions, and only features belonging to the same subregion

are matched. The proposed matching strategy combines a local and a global

similarity measure. Using the notation introduced above, the local measure is

defined as

Dlocal({fi}test, {fj}temp) =
1

R

R∑

r=1

mini,j(d(f
test
i , f temp

i )) · wr, (2.26)

2Available at http://www.ee.surrey.ac.uk/CVSSP/banca/
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where subregions r are weighted by region specific weights wr, which are

determined comparably to [AHP04]. The global similarity measure is defined

as

Dglobal({fi}test, {fj}temp) =
match({fi}test, {fj}temp)

|{fj}temp| , (2.27)

where match(a, b) denotes the number of valid matches according to their

distance ratios as defined in [Low04], and |{x}| denotes the number of elements

in the set {x}. Note that this global similarity depends not only on the number

of matches with respect to a particular template, but also on the ambiguity of

matches with respect to all other templates stored in the database. These mea-

surements are combined to a final similarity measure by simple multiplication.

Dfinal = Dlocal ·Dglobal (2.28)

The authors evaluated their proposed approach on the FERET and the CAS-

PEAL databases, where all images have been normalized. A detailed presenta-

tion of their results is given in the context of our evaluation (Chapter 4). To

sum up, this approach is superior to the one of Bicego et. al and shows an

incomparable robustness with respect to a viewpoint change of 30◦.

Identification System for a Mobile Robot

Unlike the previous authors who used face databases for evaluation, Cruz et al.

test a SIFT based face recognition system in a realistic scenario using a mobile

robot [CSM08]. They propose another matching strategy and a refinement

scheme using the information of consecutive frames of a video camera. Face

detection is accomplished with the boosted cascade of simple features proposed

by Viola and Jones [VJ01] - which is not based on interest points. Once a face is

detected, this algorithm is further used to detect an eye, from which they infer

”based on standard face measures” the position of two other regions, namely the

other eye and the region around the nose and the mouth. Faces are added by

storing the SIFT features corresponding to these three regions together with the

name and the total number of obtained features in a database. For matching,

distances of features of corresponding subregions are computed for all faces in

the database. Each single feature match is accepted if it meets the distance

ratio criterion proposed by Lowe [Low04]. A face-to-face match is considered

to be found based on either of two conditions. Let si be the number of valid
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matches between the test image and a template i, s = (s1, . . . , sN) the similarity

vector for all templates, and ni the total number of features stored in the i− th

template. The basic criterion si
ni

> t, where t is a predefined global threshold,

is combined with one of the following:

max(s)− snd(s) ≥ 2 · snd(s), or (2.29)

max(s)− avg(s) ≥ 2 · avg(s) (2.30)

In these formulationsmax(s), snd(s) and avg(s) denote the maximum, second

maximum, and average value, respectively, of si ∈ s.

In their refinement strategy based on consecutive frames, the authors follow

a Bayesian approach in order to determine the posterior probability of a face

fi given the similarity vector s, and define probabilistic versions of Equations

(2.29) and (2.30). Once a face is identified or a maximum number of frames

inspected, the probabilities are reset to uniform.

Evaluation results The authors conducted tests on Yale’s face database3 as

well as in an indoor office environment using a camera resolution of 640× 480.

Once a face has been detected, a tracking algorithm ensured to find the same

face in the following frames, and a maximum number of 10 frames is used to

determine the identity of a detected face. In this scenario, precision and recall

varies between 100% of precision with 33% recall and 96.7% precision with

57.3% of recall. While for a service-robot such a low recall might be acceptable,

for security systems using a single image to verify the identity of a person it is

simply not. Experimentation results on the Yale database with one test image

per person show a precision of 50% with a recall of 10%, where only 17 people

are stored in the database.

SURF for Face Recognition

An investigation on the use of SURF features for face recognition has been

carried out by Du et al. in [DSHN09]. Their matching strategy and similarity

estimation involves a nearest-neighbor approach based on the Euclidean distance

between features in test and training images as above. Rather than constructing

subregions to restrict feature matching, they regard only features in the template

3Available at: http://cvc.yale.edu/projects/yalefaces/yalefaces.html
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image, which lie within a specified search window around the image position

of the currently inspected test feature. Therefore, they assume that all faces

are upright and face images are normalized. In order to verify a potential

feature match, a search over the whole template image region is performed to

find a second closest feature match. If the distance ratio is smaller than a

predefined threshold, a match is considered to be valid. The final similarity

measure between a test and a template image is defined as

Sim({fi}test, {fj}temp) =





DisAvg+RatioAvg
2

if N ≥ 10

DisAvg+RatioAvg
2

+ 1 otherwise,
(2.31)

where DisAvg denotes the average minimum distance between valid feature

matches and RatioAvg denotes the average distance ratio between closest and

second closest features. The template with minimal similarity is considered as

the winner. Evaluation has been carried out on the FERET database [PWHR98,

PMRR00] using the subsets with expression variations. One image per person

is used for training and one for testing. In comparison with SIFT, SURF shows

similar performance but is two times faster for matching. The augmented 128-

dimensional version of SURF showed slightly better performance than SURF-64

and standard SIFT.

Comparison of SIFT and SURF Features

Drew et al. compare SIFT and SURF descriptors in [DSC09] using a slightly

different approach. Rather than extracting SIFT and SURF descriptors based

on interest points, they extract them on a regular grid. From aligned, normal-

ized and cropped images of (64× 64) pixels, they extract 1024 descriptors. For

matching, an all-to-all and a grid-based approach with and without overlap-

ping are compared. Potential matches are considered as valid if they pass the

standard distance ratio test. In order to enhance outlier removal, the authors

propose a random-sample-consensus (RANSAC)[FB81] approach to find homo-

graphies between test and training images and remove matched features whose

location projections do not fall into a circular region of three pixels radius from

the corresponding template feature location. This RANSAC approach is fur-

ther used to create a combined system of SIFT and SURF features, where all

potential matches are merged before homography determination.
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Besides the standard SIFT and SURF procedures, which are in-plane rota-

tionally invariant, the authors evaluate upright versions of both, and the 128-

dimensional augmented SURF descriptor.

Tests have been carried out on the AR-Face 4 database as well as on CMU-PIE

[SBB02]. All images are rotated, so that the eye-centers lie on the same row.

Images are further cropped and scaled to 64 pixels in each direction. Tests on

the AR database use seven images per person for training and seven for testing,

while on the CMU-PIE database a one-shot training scenario is evaluated on

twenty test images for each person.

The upright descriptors performed best. The results confirm, that matching

based on subregions improves the result over all-to-all matching. Outlier removal

based on RANSAC further increases the performance even for matching on a

regular grid. The combined system of upright SIFT and SURF descriptors

achieved the best results.

2.3.3 Face Detection

Though many approaches to face detection using local features and to object

detection using interest points exist, there has been to our knowledge only one

approach to face detection involving interest points. As these ideas will form

the basis of our approach, they are described in particular detail.

Toews and Arbel propose in [TA06, TA07, TA09] a probabilistic face ap-

pearance model which is - to some extent - invariant to changes in pose (and

view-point). It basically consists of three componants:

1. A set of scale invariant features (e.g. SIFT)

2. An object class invariant (OCI)

3. A statistical relationship between the feature set and the OCI

The set of features: A feature mi : (m
a
i , m

g
i , m

b
i) is defined by an appearance

ma
i , a geometry mg

i , and a binary component mb
i . The appearance component

specifies the appearance of a feature in terms of its feature descriptor (e.g. the

128-dimensional SIFT descriptor). The geometry mg
i : (x, y, σi, θi) holds its

4Available at: http://www.ece.osu.edu/ aleix/ARdatabase.html
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2.3 Methods Based on Interest Points

Figure 2.1: Example OCI: An OCI is represented as a vector from the base of
the nose to the

2D position, scale and angle. The binary component mb
i indicates whether the

corresponding feature is present or not.

The object class invariant: The authors define an OCI as

an abstract 3D geometrical structure defined with respect to an un-

derlying 3D object class, whose projection in the image plane main-

tains a consistent geometrical interpretation across different view-

points and object class instances [TA09].

A 3D vector from the base of the nose to the forehead as illustrated in Figure

2.1 maintains this property as long as the camera does not move under or over

the head. In these cases we could not uniquely determine the vertical angle

between the camera and the face (and thus the real distance between the base

of the nose and the forehead). Hence the choice of an OCI is dependent on the

desired degrees of freedom. These structures need to be labeled by hand as it

is difficult to derive them directly from images.

An OCI is denoted as o : (og, ob), having a geometry and a binary component.

It has no appearance description, since it is not actually visible in the scene.
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The probabilistic relationship: The relationship between an OCI and a set

of features is modeled as the conditional probability of the OCI given the set

of features. This way, the probability of an OCI hypothesis can be expressed

in terms of an observed set of features. Following Bayes rule, the posterior

probability of an OCI given a set of features is proportional to the probability

of the feature set given the OCI and the prior probability of the OCI:

p(o|{mi}) =
p({mi}|o) p(o)

p({mi})
= p(o)

∏
i p(mi|o)
p({mi})

, (2.32)

assuming conditional feature independence to keep the model tractable. The

term p(o) is the prior probability of the OCI and p({mi}) is a normalization

coefficient ensuring that p(o|{mi}) is a valid probability distribution. The re-

maining term p(mi|o) models the probability of a specific feature given the OCI.

p(mi|o) = p(ma
i |mb

i) p(m
b
i |ob) p(mg

i |ob, og), (2.33)

where p(ma
i |mb

i) models the conditional probability of feature appearance

given feature occurrence and p(mg
i |ob, og) the conditional probability of fea-

ture geometry given OCI occurrence and OCI geometry. Those distributions

are modelled as Gaussians. The probability of feature occurrence given OCI

occurrence p(mb
i |ob) is a binomial distribution.

Model training: In order to find model features which are, based on their

appearance, distinctive for their relative position, scale and angle to the OCI,

mean-shift clustering [FH75] is applied, starting with the whole set of training

features as potential model features. Unfortunately, the authors provide no

further information as to how they apply this procedure. The likelihood ratio
p(mb=1

i |ob=1)

p(mb=1
i |ob=0)

is used to evaluate the distinctiveness of a model feature for its

respective location. The cluster represented by a feature mi is delimited by

a global geometrical threshold T g and a feature specific appearance threshold

T a
i chosen as to maximize the feature’s distinctiveness. After model training,

features with low distinctiveness are removed from the model.

Detection/Localization: For detection, all features extracted from a test im-

age are matched to all model features using the previously defined thresholds

T g and T a
i . Each single feature match suggests the geometry of an OCI, using
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the model feature geometry which is defined relatively to the OCI. A cluster of

such geometries further suggests the presence of a real OCI. An hypothesis is

tested using Bayes’ decision ratio

γ(og) =
p(og, ob=1|{mi})
p(og, ob=0|{mi})

=
p(og, ob=1)

p(og, ob=0)

∏

i

p(mi|og, ob=1)

p(mi|og, ob=0)
, (2.34)

determining the likelihood ratio of a true vs. false OCI hypothesis given the

observed feature set. The first terme on the right describes the prior ratio of OCI

occurrences and is manually set to regulate the ratio of true vs. false positive

detector responses. The second term,
∏

i
p(mi|og,ob=1)
p(mi|og,ob=0)

represents the likelihood

ratio of valid to invalid feature matches and reveals an inconsistency of the

model, when it is disassembled according to Equation (2.33):

p(m|og, ob=1)

p(m|og, ob=0)
=

p(ma|mb=1)

p(ma|mb=1)
·p(m

b=1|ob=1)

p(mb=1|ob=0)
· p(m

g|ob=1, og)

p(mg|ob=0, og)

=
p(mb=1|ob=1)

p(mb=1|ob=0)
· p(m

g|ob=1, og)

p(mg|ob=0, og)
, (2.35)

where index i has been removed for better readability. In this case, the

likelihood ratio of appearances collapses to one. Thus we suggest a reformulation

of Equation (2.33) as to define a conditional probability of feature appearance

given OCI occurrence:

p(mi|o) = p(ma
i |ob) p(mb

i |ob) p(mg
i |ob, og) (2.36)

Discussion: The evaluation in [TA06] shows a maximum detection rate of

81%, which is aproximately achieved from a false detection rate of 10% onwards.

In the context of gender classification the autors use this model as a prepro-

cessing step to filter face specific features from a cluttered scene image [TA09].

Using solely features which are good for representing a general face may not

lead to satisfactory results in the context of face identification as distinctive

features with respect to a particular person may be already discarded in this

first stage. We specifically adress this question in our model, which is presented

in the following chapter.
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3 A Scale Invariant Probabilistic

Model For Face Recognition

Its applicability in realistic scenarios is the main design goal for our face recogni-

tion model. We outline our understanding of a realistic scenario by the proper-

ties, which we assume to have the most significant impacts on design decisions:

A face can be present anywhere in the scene. Furthermore, a face can be of any

size and appear in any relative 3D-position to the camera. Secondly, there may

be complex backgrounds and thus the model needs to be robust against clutter.

As seen in the previous section, parts based object models have the great

advantage of being robust against partial occlusion (e.g. facial hair, glasses or

other objects). We choose to use SIFT features to model these parts, because

they are scale invariant by definition, and beyond that, they proved to be rather

insensitive to small changes in pose and illumination [MS05].

The superiority of probabilistic models over deterministic models in the con-

text of object detection has been shown by Schmid in [Sch99]. The promising

results on face detection presented by Towes and Arbel [TA06, TA07, TA09]

further suggest to opt for a probabilistic face detection model. An inherent ad-

vantage of probabilistic models is the simplicity with which a background model

can be incorporated.

Multi View vs. View Invariant Model

There are two complementary ways to achieve the capability of detecting objects

across different poses and camera positions. The multi view approach follows

the idea that the detection problem can be subdivided into detecting different

views separately. In practice, multiple detectors - one for each distinct view

- are trained and applied to sample images more or less separately [Low01].

Therefore, the learning and detection procedures are rather complex and time

consuming. Finding distinct views from sample images requires large amounts
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3 A Scale Invariant Probabilistic Model For Face Recognition

of training data. Furthermore, it is rather difficult for systems following this

approach to deal with faces whose pose lies somewhere in between these distinct

views, as multiple detectors close to this pose are expected to respond with little

confidence.

A view invariant approach on the other side, models the appearance of an

object class such as faces independently of its pose. Rather than explicitly

accounting for pose variations on the top level, a single representation using

perspective invariants is defined, which implicitly incorporates appearance vari-

ations due to different object poses [TA06].

Geometrical Interdependencies in Models Based on Local Features

Modeling faces from local features imposes the question of how to represent the

geometrical relationship of features to each other and how to localize a face

based on feature locations. A bag of features approach does not include any ge-

ometrical interdependencies. Thus, the 2D location of an instance of the object

class modeled can only be inferred by identifying modes of the model feature

density in a test image. As there is no knowledge about relative feature scales

and angles, it is not possible to determine these properties for the underlying

object class either. This approach requires a rather large number of model fea-

tures (or features with a high conditional occurrence probability) but is very

flexible with respect to object geometry.

If we interpret features as nodes in a graph, where arcs denote a modeled geo-

metrical dependency, the degree of connectivity lets us characterize all methods,

which incorporate feature geometry to some extent. A fully connected graph

represents the most complex model in this regard, as it has an extremely high

number of parameters. For probabilistic models consisting of thousands of parts,

model learning with this approach can be considered infeasible. Additionally,

such a model imposes very restrictive priors to the feature geometry given the

object. Therefore it is only applicable to very rigid objects.

As proposed by Carneiro and Lowe [CL06], k-connected geometric models are

more flexible. With this approach, a feature geometry depends only on the k

closest features, which drastically decreases the model complexity (obviously de-

pending on k). These models are globally more flexible while feature geometries

are locally bound by features in their neighborhood.

The most simple way of modeling geometrical relationships in parts based
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models has a star shaped structure. In this case, the relationship between all

features and an (arbitrary) super feature are learned, which further increases the

potential geometrical flexibility and decreases the number of model parameters

to be learned. The right choice of the reference frame (i.e. the central feature)

is crucial.

In the context of face recognition, some degree of local geometrical flexibility

is desirable, as relative feature positions vary with a change in facial expression

as well as between faces of different individuals. The method proposed by Towes

and Arbel using the Object Class Invariant (OCI) combines both desirable char-

acteristics: The face model is reported to be invariant to camera viewpoint to

some extent, and feature geometries are solely defined with respect to the OCI,

representing a star shaped structure. Therefore, we base our model on this

approach.

3.1 Detection Model

Similar to [TA06], we describe the appearance of a face in terms of a set of

model fetures {fi}model and an OCI o. Additionally, we distinguish between

two object classes C := {face, bg}, representing faces and the background, and

we define a probabilistic relationship between model features, the OCI and the

object classes.

Object Class Invariant

Although the general idea of an OCI has already been introduced in Section

2.3.3, at this point the concept should be explained in some more detail. The

purpose of the OCI is to serve as a scale invariant reference frame for the position

of a face, in order to associate features with relative locations to this reference

frame. This conceptual reference frame is defined in 3D world coordinates as it

refers to 3D object classes (e.g. faces) and not directly to their 2D projections.

To be able to extract the same amount of information, that is the pose of the

underlying object class, from the 2D projection of the reference frame in an

images as from its three dimensional counterpart, it has to be ensured that this

reference frame is not subject to any perspective distortion.

Consider an OCI defined by three orthogonal vectors in 3D space and its

two dimensional projection from two different viewpoints. We can not uniquely
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3 A Scale Invariant Probabilistic Model For Face Recognition

determine the correct corresponding vectors in these two images, and the OCI

geometry is distorted in a way that a unique geometrical interpretation is im-

possible. Thus we might choose a simpler OCI geometry.

Towes and Arbel propose to use a vector from the base of the nose to the

forehead [TA06] as a face specific OCI. Recall that the definition of the OCI is

in 3D world coordinates. The projection of this vector onto the image plane,

however, permits a consistent interpretation with its definition in three dimen-

sional space1 as long as the camera does not move over or under the head, in

which case the OCI would be subject to perspective distortion. This kind of

OCI offers several degrees of freedom: Faces may be located at varying posi-

tions, of different sizes and of different in-plane orientations, as the position, the

length and the orientation of the vector defining the OCI allow to marginalize

out these variations. Additionally, rotating the face about the vertical axis does

not affect the geometry (and thus the interpretation consistency) of the OCI.

As with this kind of rotation, facial feature locations relative to the OCI vary

in horizontal direction, the challenge for a view invariant face detection system

is to find facial features which are distinctive for their relative geometry across

views and subjects.

In our model, we describe an OCI by its geometry go : (xo, yo, σo, θo), defining

its position in the image, its scale and angle.

Model Feature Representation

A model feature fi : (ai, T
a
i , gi, p

face
i , pbgi ) comprises the following components:

1. The feature appearance ai is defined by its 128 dimensional SIFT descrip-

tor.

2. As a model feature represents a cluster of similar SIFT features, a distance

threshold T a
i delimits the basin of attraction of the model feature fi in

appearance space.

3. The feature geometry gi : (xi, yi, σi, θi) describes its respective 2D posi-

tion, scale and angle, which we also get from the SIFT feature extrac-

tion process (Section 2.3.1). Again, as we deal with feature clusters,

the range of geometries is delimited by a set of scale invariant thresholds

1assuming orthogonal projection
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T g : (T pos, T σ, T θ). Rather than being feature specific, these thresholds

are defined globally.

4. The entity pfacei describes the fraction of face training features, which

correspond to this particular model feature.

5. Similarly, pbgi is the fraction of background training features corresponding

to the model feature fi.

Probabilistic Relationship

In order to formulate a probabilistic relationship between object classes, model

features and the OCI, we adapt the standard formulation of a generative object

detection model (introduced in Section 2.3.1) to our notation. Given a set

of features{fi}, i = 1, · · · , N and an object class c ∈ C, their probabilistic

relationship is defined as

P (c|{fi}) =
P ({fi}|c)P (c)

P ({fi})
≈

N∏

i=1

P (fi|c), (3.1)

using Bayes theorem and assuming conditional feature independence (compare

Equations (2.19) and (2.20)). Thus, we concentrate on the individual feature

probability conditioned on both the face (face) and the background (bg) class.

The characteristics we want to incorporate are the feature appearance ai given

a class c, the occurrence probabilities pfacei and pbgi , as well as the feature geom-

etry fg. With respect to the OCI, it becomes clear that the individual feature

probabilities for the classes face and bg are different: While for the face class

we aim to model feature geometries relatively to the OCI go, features in the

background can be assumed to be independent of the presence and thus the ge-

ometry of an OCI. Therefore, we derive a specific formulation for the individual

feature probabilities for each object class:

Face Feature Probability: Given a model feature fi : (ai, T
a
i , gi, p

face, pbg) and

an OCI go, the individual face feature probability is defined as

p(fi|face) = p(ai|face) · p(gi|face, go) · pfacei (3.2)

The term p(ai|face) describes the probability of model feature fi having the
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appearance ai if it represented a face feature. We assume a Gaussian distri-

bution in appearance space. The distribution of feature geometry relatively to

the OCI p(gi|face, go) is assumed to be Gaussian as well. In Section 3.1.1 we

describe how to represent the relationship between feature geometry and OCI

geometry. Section 3.1.2 discusses how the parameters for the appearance and

geometry distributions are derived from data.

Background Feature Probability: As mentioned above, in the case where

a feature fi corresponds to the background bg, there is no need to model its

geometrical relationship to the OCI. Hence, the formula reduces to

p(fi|bg) = p(ai|bg) · p(gi|bg) · pbgi (3.3)

The appearance probability p(ai|bg) is in this case also modeled as a Gaus-

sian distribution. As a background feature can potentially appear anywhere in

the image, the geometrical feature probability for the class bg is modeled as a

uniform distribution.

3.1.1 Geometrical Relationships

Before describing the learning and detection procedures, it is useful to take a

look at the mathematical background of the geometrical relationships involved.

As mentioned above, our geometrical model is based on a star shaped structure,

where all feature geometries are modeled relative to the OCI. Hence, given a

feature geometry gi : (xi, yi, σi, θi) and an OCI geometry go : (xo, yo, σo, θo) in

absolute image dimensions, we need to normalize gi to go, that is to determine a

relationship gri : (x
r
i , y

r
i , σ

r
i , θ

r
i ), which describes the feature geometry in function

of a normalized OCI geometry gnormo : (xo = 0, yo = 0, σo = 1, θo = 0). In

practice, it turns out to be more useful to normalize the OCI geometry to feature

geometry. This way we are able to easily predict an OCI based on the geometry

of a feature in a test image which corresponds to a model feature. Therefore,

we estimate the relationship gri : (xr
i , y

r
i , σ

r
i , θ

r
i ) based on a normalized feature

geometry gnormi : (xi = 0, yi = 0, σi = 1, θi = 0).
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Normalization to Feature Geometry: This normalization is performed in

three steps. We start by defining the relative position:

xshift
i = xo − xi yshifti = yo − yi (3.4)

With xshift
i and yshifti , we describe the relationship of go to a feature geometry

gi : (xi = 0, yi = 0, σi, θi), which allows us to predict the 2D location of the OCI

based on gshifti and the image location of a test feature, which matches model

feature fi. The relationship gshifti can thus be seen as a shift invariant mapping

from the model feature fi to the OCI. We still need to obtain scale and rotation

invariance. The order of these two normalization operations does not affect the

result. We start with scale invariance:

σscale
i =

σo

σi

xscale
i =

xshift
i

σi

yscalei =
yshifti

σi

(3.5)

The geometry gscalei represents a mapping from a feature geometry gi : (xi =

0, yi = 0, σi = 0, θi) to the OCI. Rotation normalization involves projecting

relative OCI coordinates to local feature coordinates:

σrot
i = σshift

i (3.6)

θroti = θo − θf

xrot
i = cos(−θi) · xscale

i − sin(−θi) · yscalei

yroti = sin(−θi) · xscale
i + sin(−θi) · yscalei (3.7)

Based on this final mapping gri = grot, we are able to define powerful transfor-

mations and expressions: It is possible to project feature coordinates into (nor-

malized) OCI coordinates, which will be useful to estimate a feature bounding

box. We can compare the relative position of a pair of features to each other

through comparing their respective mappings to the OCI. And based on the

absolute geometry of a feature in a test image, we can project an OCI into the

image.

Geometrical Agreement: In order to determine model features which are dis-

tinctive for their relative position to the OCI, we need a function to quantify the
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relative position of a pair of features (f1, f2) to each other, which we call geomet-

rical agreement [TA06]. Given a normalized feature geometry gri corresponding

to feature fi and a set of geometrical thresholds T g : (T pos, T scale, T angle), then a

feature fj with geometry grj agrees geometrically with fi, if it lies within the four

dimensional scale invariant bounding box defined by T g around feature fi. More

formally, fj agrees geometrically with fi if and only if the following expression

is true:

GeoAgg(fi, fj) =( | xi − xj | < T pos · σi )∧
( | yi − yj | < T pos · σi )∧
( | log σi − log σj | < log T scale )∧
( | θi − θj | < T angle ) (3.8)

Note that position is compared relatively to feature normalized OCI scale

σi and scale difference is evaluated in the log domain, as differences in this

dimension grow exponentially with absolute scale. By definition, geometrical

agreement is a binary function. We will show that despite its simplicity, this

function is sufficient for our model.

OCI Prediction Based on a Single Feature Consider a test feature fj in an

image which corresponds to a face model feature fi. If the normalized relation-

ship gi between the model feature fi and the OCI geometry is known, the OCI

can be projected into the image plane of the test image based this relationship

gi and the test feature geometry gj. Recall that gi defines a mapping from the

normalized model feature geometry gnormi : (xi = 0, yi = 0, σi = 1, θi = 0) to the

OCI. Applying the inverse functions of the shift, scale and orientation normal-

izations as defined in Equations (3.4), (3.5) and (3.7), respectively, in inverse

order, we can predict the OCI geometry go in absolute image coordinates as

follows: Starting by rotating gi into image coordinates, we get

xinv rot
o = cos(θj) · xi − sin(θj) · yi

yinv rot
o = sin(θj) · xi + cos(θj) · yi
θinv rot
o = θj + θi (3.9)

Now, the OCI geometry ginv rot
o needs to be scaled and shifted approriately:
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xinv scale
o = xinv rot

o · σj yinv scale
o = yinv rot

o · σj σinv scale
o = σi · σj (3.10)

xinv shift
o = xinv scale

o + xj yinv shift
o = yinv scale

o + yj (3.11)

The final OCI geometry go in absolute image coordinates is given by

go : (xinv shift
o , yinv shift

o , σinv scale
o , θinv rot

o ). This procedure will be used to con-

struct face hypotheses in Section 3.1.3.

Predicting the Feature Location In the context of detection and identifi-

cation system combination in Section 3.3, we are interested the exact oppo-

site normalized geometrical relationship between the OCI and model features,

namely the position gi relatively to a normalized OCI gnormo : (xo = 0, yo =

0, σo = 1, θo = 0). Here we will show how we can easily transform the first nor-

malized form into the other. The initial relationship gi defines the relationship

between gnormi : (xi = 0, yi = 0, σi = 1, θi = 0) and any relative OCI geometry

go : (xo, yo, σo, θo). The idea behind this transformation is to invert all relative

coordinates (i.e. position, scale and angle). As the inversion of relative ori-

entation includes a rotation of x- and y-coordinates, we accomplish the whole

transformation in two steps:

x′
i =

−xi

σi

y′i =
−yi
σi

σ′
i =

1

σi

(3.12)

x′′
i = cos(−θ) · x′

i − sin(−θ) · y′i
y′′i = sin(−θ) · x′

i + sin(−θ) · y′i
θ′′i = −θi (3.13)

the final feature geometry normalized to the OCI is given by

g−1
i : (x−1

i = x′′
i , y

−1
i = y′′i , σ

−a
i = σ′

i, θ
−1
i = θ′′i ). As the transformations in-

troduced above form the basic concepts of our scale invariant face recognition

model. Therefore, it is important to introduce them in such detail.
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3.1.2 Model training

Model training aims to identify clusters of SIFT features which are not only

distinctive for faces but also for their respective location relative to the OCI.

For these clusters, we further need to estimate their appearance and geometry

distributions as well as to determine the feature specific appearance threshold

T a
i and the binomial feature occurrence probabilities pfacei and pbgi .

Feature Clustering

Towes and Arbel propose in [TA09] for their probabilistic face detection model

using the OCI a mean shift clustering approach [FH75] to determine distinctive

model features.

They start with the whole set of face training features as potential clusters

and proceed as follows: For each potential cluster, the appearance distance and

geometrical agreement with all other training features are calculated. Based

on these estimations, a feature specific appearance threshold is chosen as to

maximize the probability ratio of geometrically agreeing vs. geometrically dis-

agreeing face features, which the authors call feature distinctiveness. Then,

the cluster center in appearance space and image space is set to the mean ap-

pearance and geometry of all geometrically agreeing features, which also agree

in terms of appearance, that is whose distance in appearance space from the

current cluster mean is smaller than the chosen appearance threshold. This

procedure is carried out on all potential clusters and iterates until convergence

(or until a maximum number of iterations is reached). However, the authors

state that a single iteration may be sufficient.

After evaluating all potential clusters, an independent subset of clusters is

determined and all other clusters as well as clusters with low distinctiveness are

discarded. The authors give no further information on how this independent

subset is determined. We suppose that, given any two clusters which agree

geometrically and overlap in terms of appearance based on their appearance

thresholds, the feature which is more distinct is kept and the other one discarded.

Besides this ambiguity, the proposed approach has from our point of view

some other shortcomings: A mean shift procedure on both appearance and

geometry is not guaranteed to converge, as geometrical thresholds are used

to select features which potentially support a cluster. By supporting features
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3.1 Detection Model

we mean features which agree in terms of appearance and geometry with a

cluster. A feature, which has been a positive (the cluster supporting) sample

in the last iteration, may now disagree geometrically and thus may represent a

negative sample, which is now tried to be excluded, based on the way appearance

thresholds are determined. Furthermore, since clustering starts with a large

number of potential model features and clusters are only removed after all of

them have been evaluated, this method seems to be rather time consuming and

inefficient.

Based on these reflections we opt for a different approach: At first, we con-

struct clusters solely based on appearance. In a second step, these clusters are

either selected to form a model feature or discarded if most of the supporting

training features disagree in terms of their geometry relative to the OCI.

Appearance Clustering: Training features are clustered based on their ap-

pearance using an agglomerative clustering approach. Therefore, we start with

all face training features as potential appearance clusters. We define a global

appearance distance threshold T d. Distances between SIFT descriptors are cal-

culated using the Euclidean distance. In each iteration, we merge the pair of

clusters with minimum Euclidean distance until there is no pair of clusters left,

whose distance is lower than the predefined threshold T d. For each cluster, we

keep a counter of supporting training features. A merge is performed by esti-

mating the mean SIFT feature vector of both clusters, where the contribution of

each cluster is weighted by the number of its respective supporting training fea-

tures. Both original clusters are considered as being invalid for future merging

operations, while the supporting features of both clusters are associated with

the derived cluster and its feature counter is set appropriately.

In order to find the pair of clusters with minimum distance efficiently, we use

a priority queue. Each queue entry represents a pair of clusters. The distance

between their respective SIFT descriptors forms the key by which entries are

prioritized. In order to initialize the queue, distances between all pairs of initial

clusters are estimated. If the distance between a pair of clusters does not exceed

the threshold T d, a queue entry is created consisting of the estimated distance

and the indices of the corresponding clusters. Note that with this method,

there may be entries in the queue which are invalid. This happens when one

of the corresponding clusters has been merged with another cluster after the
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queue entry has been created. Therefore, finding the current pair of clusters

with minimum appearance distance involves not only popping the top entry off

the queue but also checking whether both corresponding clusters are still valid.

Otherwise the entry is discarded.

To be able to avoid reaching memory limitations, we developed a multi-tier

appearance clustering approach: Instead of using a single appearance threshold

T d, we define a progression of thresholds (T d
1 , · · · , T d

N). The algorithm outlined

above starts with the first threshold in this sequence T d
1 . Once it terminates

(i.e. there are no more pairs of valid clusters whose distance is lower than T d
1 ),

the algorithm is re-initialized with the remaining valid clusters and the next

appearance threshold in the sequence. This process iterates for each threshold

T d
i , i = 1 · · · , N .

We choose to set the final appearance threshold T d
N as to maximize the number

of appearance clusters with at least two supporting training features (on the

data sets we used for empirical evaluation, T d
max ≈ 0.5 was independent of the

number and choice of training features).

Geometry Clustering: After appearance clustering, all clusters with less than

two support features are discarded. The remaining clusters are inspected indi-

vidually. Given an appearance cluster ci with supporting features f j
i , we seek

to determine whether for any geometry gji , more than half of the support fea-

tures agree geometrically. Otherwise, the appearance cluster ci is considered to

be not distinctive for any geometry and is discarded. Thus, we count for each

geometry gji the number of geometrically agreeing features fk
i , k 6= j. If the

condition defined above holds for any geometry gji , this geometry serves as a

preliminary cluster geometry gi. The set of remaining clusters forms the set of

model features {fi}.

Estimation of Model Parameters

For each of the derived model features fi we need to determine the following

parameters:� The feature specific appearance threshold T a
i� The appearance distribution p(ai|c), c ∈ C� The geometrical distribution relative to the OCI p(gi|face, go)
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3.1 Detection Model� The binomial feature occurrence probabilities pface and pbg

We define the set of supporting features of a model feature fi as the set of

features {f j
i } which have been merged in the course of building this particular

model feature and which agree with its preliminary geometry.

Appearance Threshold: The only parameter associated with a model feature

fi which is independent of any object class is the feature specific appearance

threshold T a
i . However, as our goal is to create model features which are distinc-

tive for faces and their respective location, we incorporate only support features

{f j
i } for estimating this parameter. The threshold T a

i is set to the maximum

distance of all support features to the model feature appearance

T a
i = argmaxj d(a

j
i , ai), (3.14)

where d(a, b) denotes the Euclidean distance between a and b. This way we

choose the smallest possible appearance threshold to include all support features

and thus maximize the probability of excluding features corresponding to the

background or face features which disagree with the model feature geometry

while preserving the features descriptiveness.

Geometry Distribution: As mentioned above, for the relative feature geometry

to the OCI we assume a Gaussian distribution. Thus, we compute the mean and

diagonal covariance of the geometries {gji } corresponding to the set of support

features {f j
i }.

The uniform geometrical distribution for any feature given the background

class bg is dependent of the size of the image in pixels AI and the range of scales

in which SIFT descriptors have been extracted σI :

p(gi|bg) =
1

A
· 1
σ
· 1

2π
(3.15)

Rather than being determined in the learning stage, this uniform distribution

is dependent on the test setting (e.g. the test image resolution). As we can see,

this distribution is equal for any feature fi.

Appearance Distributions: Based on the way we designed the clustering al-

gorithm, in this parameter estimation stage there are at least two face support
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features for each model feature fi. Actually, a large majority of the derived

model features happens to be supported by a very small number of training fea-

tures. Modeling a Gaussian appearance distribution with a diagonal covariance

of 128 dimensions (the dimensionality of SIFT feature vectors) using such a

small number of samples yields a very inaccurately estimated parameter which

would result in an over fitted model to the training data. Therefore, we estimate

a single distance variance parameter between support feature appearance aji and

mean model feature appearance ai.

The estimation of the appearance distribution given the background proceeds

in a similar way. At first, we determine which features of a set of background

training features {fk}bg agree with the model feature fi in terms of appearance,

that is d(f bg
k , fi) ≤ T a

i . Then we compute the distance variance corresponding

to the background using this subset of background training features.

Binomial Feature Probability: The class dependent feature occurrence prob-

ability pfacei is determined as the number of supporting face features over the

total number of face training features. Similarly, the background occurrence

probability pbgi is set to the fraction of background features which agrees with

fi in terms of its appearance. In addition to that, we consider all face features

not agreeing geometrically with fi as a background feature.

Comparative evaluation of this approach with the one proposed by Towes and

Arbel [TA09] in an early design stage showed that our two step agglomerative

clustering approach yields similar performance results using far less model fea-

tures. Furthermore, our method is straight forward to implement and easily

extendable to multiple object classes.

3.1.3 Face Detection and Localization

Face detection utilizes a set of SIFT descriptors {fj}test extracted from a test

image and the trained model in order to construct hypotheses of OCI geometries.

Finally, these hypotheses are validated, which is the decision of whether the

hypothesis is more likely to correspond to an actual face or the background.
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3.1 Detection Model

Hypothesis Construction

Given a set of model features {fi}model and a set of test features {fj}test, we start
by trying to match all test features with all model features. A test feature f test

j

is said to successfully match a model feature fmodel
i if its distance to the mean

appearance amodel
i does not exceed the feature specific appearance threshold T a

i .

match(f test
j , fmodel

i ) = d(atestj , amodel
i ) < T a

i (3.16)

For each successful match between a test feature f test
j and a model feature

fmodel
i , we predict the geometry of an OCI gijo based on the test feature geometry

gtestj in absolute image dimensions and the normalized OCI geometry gmodel
i as

shown in Section 3.1.1. Based on the set {gijo } of predicted OCI geometries, we

aim to generate a set of hypotheses {Hk}. Therefore, we determine for each

predicted OCI geometry gijo the subset of all predictions {gijo }, which agrees

geometrically with gijo . The sets of test features {fj}test and model features

{fi}model, which correspond to geometrically agreeing OCI predictions, together

with the currently evaluated OCI geometry gijo form an hypothesis Hk. Thus,

we generate one hypothesis for each successfully matched test feature fj by

associating all other successfully matched test features and their corresponding

model features with the predicted OCI gijo , whose OCI predictions agree with

this geometry.

Hypothesis Validation

An hypothesis H : ({fj}test, {fi}model, go), which associates a set of features

{fj}test, j = 1, · · · ,M with a set of face model features {fi}model, i = 1, · · · , N
and predicts an OCI geometry go, can be validated using the likelihood ratio of

true vs. false feature correspondences:

γ(H) =
p(face|{fi})
p(bg|{fi})

=
p({fi}|face) p(face)

p({fi}|bg) p(bg)

=
p(face)

p(bg)
·

N∏

i=1

p(fi|face)
p(fi|bg)

, (3.17)
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where we used Equation (3.1). An hypothesis is accepted if γ({fi}) is greater

(or equals to) one. This equation shows that the approximation of p(c|fi) in

Equation (3.1) turns into an equality, when used in the context of likelihood

ratios, by adding the term p(face)
p(bg)

, which theoretically describes the likelihood

ratio of the class prior probabilities. Practically, we do not know in advance,

features of which class are more likely to appear. Hence, there are two possi-

bilities to model these priors: Either we assume that both classes are equally

likely, in which case the term p(face)
p(bg)

disappears from the formula; or we man-

ually set this prior ratio to an arbitrary value, which allows us to empirically

determine a good compromise between false positive and false negative detector

responses (see Section 4.1). Using the individual feature probabilities for faces

(Equation (3.2)) and background features (Equation (3.3)), the decision ratio

defined above expands to

γ(H) =
p(face)

p(bg)
·

N∏

i=1

p(ai|face)
p(ai|bg)

· p(gi|face, go)
p(gi|bg)

· p
face
i

pbgi
, (3.18)

which consists of four distinct terms: the class prior ratio discussed above,

and for each individual feature, terms describing the class likelihood ratio based

on either feature appearance or feature geometry or feature occurrence proba-

bilities.

In practice, we do not accept all hypotheses Hk generated as shown in the

previous section, which would theoretically pass the validation. That is because

a single test feature f test
j may support more than one hypothesis. Either by

matching more than one model feature, or by predicting an OCI geometry,

which agrees geometrically with more than a single hypothesized OCI. However,

we start by evaluating the probability ratio γ(Hk) for each hypothesis. The

hypothesisHmax
k , which passes the validation and has the highest likelihood ratio

of being a true face vs. corresponding to background clutter, is accepted and

removed. Then, all test features f test
j , which are associated with Hmax

k , as well

as their predicted OCI geometries gijo , are discarded. This involves updating the

sets of associated test and model features for all remaining hypotheses {Hk} and

re-evaluating γ(Hk). This procedure iterates until there is no more hypothesis,

which passes validation.
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3.2 Identification Model

3.2 Identification Model

As we focus on one shot learning, that is using only a singe training image

per subject, it is only reasonable to define a deterministic identification model.

Therefore, a basic model does not involve any model training. Instead, we

simply store all SIFT features extracted from a training image {fj}training as

a person specific template {fj}temp in a database. This database can thus be

mathematically described as a set of templates DB : {{fj}temp
i }, for subjects

i = 1, · · · , N . Hence, we concentrate on defining a matching strategy on feature

level, as well as defining similarity measures on subject level, that is a func-

tion S({fk}test, {fj}temp)i, which describes the degree of similarity between test

features and template features of subject i.

Identification involves evaluating the similarity between test features and all

templates. The subject corresponding to the template with the highest similar-

ity measure

argmaxi

(
S({fk}test, {fj}temp)i

)
, (3.19)

is considered to be present in the image. An authentication system, which

focusses on comparing a set of test features with a particular template i, in-

corporates a threshold tauth to take a binary decision of whether the subject

corresponding to template i is present in the image or not:

S({fk}test, {fj}temp)i > tauth (3.20)

3.2.1 Potential Matching Feature Selection

The methods proposed by Bicego et al. (SIFT GRID) in [BLGT06] and Luo et

al. (SIFT CLUSTER) in [LMT+07] showed, that a region based feature match-

ing strategy has two advantages over matching all possible pairs of features:

Matching solely features of corresponding subregions in the image effectively

reduces the number of false correspondences and hence increases the identifica-

tion performance. As a positive side effect, this approach demands a significantly

lower computation time on average, although the asymptotic time complexity

stays unchanged (O(NM), for M features in the test image and N features in

the database).
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A disadvantage of both methods mentioned above is, that they require test

images to be aligned (i.e. to have a fixed position of and distance between

the eyes) and rasterized (i.e. cropped to a predefined width and hight). These

requirements are not met in a realistic scenario. As we finally aim to create a

combined face detection and identification system, we use the geometry of the

Object Class Invariant (OCI) to perform some kind of alignment. The OCI

geometry holds rich information about the face location, pose and size, which

we can easily exploit to adapt a region based matching approach:

Given a set of training features {fj}training and the corresponding OCI go, we

determine the normalized relationship between all training feature geometries

gj and the OCI geometry go as described in Section 3.1.1. Instead of storing the

feature geometries in absolute image coordinates together with their respective

features in the database, we replace them by their normalized counterparts. We

similarly proceed with a set of test features: we replace the geometries defined

in absolute image coordinates by their normalized geometrical relationship to

the OCI gtesto in the test image. Due to the fact that all feature geometries -

those derived from the test image as well as those stored in the database - are

described with respect to a common reference frame, namely the OCI, we can

now define a region based feature selection method:

Each test feature f test
k is matched with the subset of features of a template

{fj}temp, whose normalized geometries gtemp
j agree with the normalized geom-

etry gtestk of the test feature. This region based matching strategy differs in

several ways from the ones proposed by other authors: Rather than fixing the

number of regions (i.e. the number of grid cells or the number of geometri-

cal clusters), our approach keeps the size of a region fixed while the number

of distinct regions is undefined. Furthermore, regions derived from geometri-

cal agreement are not only bounded in 2D pixel coordinates but also in angle

and scale dimensions. These additional restrictions further reduce the number

of false correspondences. Assuming that the OCI geometry is known (either

labeled by hand or located by our face detector), this region based matching

strategy is applicable in uncontrolled environments without further alignment

or registration.
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3.2.2 Similarity Measures

How can we - based on a set of SIFT features representing the content of a

test image and a set of test features representing the face of an individual -

measure the similarity between this face model and the test image? A large

variety of so called similarity measures have been proposed and experimented

with in the literature (e.g. [BTG06, LMT+07, CSM08, DSC09, ]), some of which

have been introduced in Section 2.3.2. As they have all been applied in different

contexts, using different interest point descriptors or matching strategies, we

intend to systematically explore the effects of various similarity measures on

identification performance.

Voting Schemes

The simplest similarity measure we define, follows a voting scheme [Low04].

All test features f test
k are matched with all features f i

j of all templates i in the

database. For each test feature f test
k , we determine the template feature fmin

k

with minimum Euclidean distance d(f test
k , f i

j). We define a function temp(fmin
k ),

which maps the feature fmin
k to the template i that includes fmin

k . Additionally,

we determine the template feature f 2nd
k , which has the second minimum distance

to test feature f test
k , and corresponds to any other template than temp(fmin

k ).

Then, we can define a function vote(f test
k , i), which is one if the template includes

the feature fmin
k with minimum distance to f test

k and the distance ratio
d(fk ,f

min
k )

d(fk ,f
2nd
k )

does not exceed a threshold Tr

vote(f test
k , i) = 1

[ (
temp(fmin

k ) = i
)
∧
(
d(fk, f

min
k )

d(fk, f
2nd
k )

≤ Tr

)]
, (3.21)

where 1[expression] is one if the expression is true and zero otherwise. The

distance ratio
d(fk ,f

min
k )

d(fk ,f
2nd
k )

can be interpreted as a measure of ambiguity of a feature

match. Thus, we ignore all test features f test
k , which can not uniquely vote for

a particular subject.

We may now define the similarity measure S({fk}test, {fj}temp)V OTING
i of a

template i to the whole set of test features {fk}test as the number of times any
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test feature votes for the template i:

S({fk}test, {fj}temp)VOTING
i =

∑

k

vote(f test
k , i) (3.22)

To account for different numbers of template features f i
j for each template i,

we further define a normalized similarity:

S({fk}test, {fj}temp)NORMALIZED
i =

S({fk}test, {fj}temp)VOTING
i

|{f i
j}|

, (3.23)

where |{f i
j}| denotes the cardinality of the set {f i

j}. This similarity measures

the fraction of features of a template i, which has been uniquely matched to the

set of test features.

Matching Quality

In addition to the binary decision of whether a feature match is ambiguous -

and thus ignored - or unique, introducing a measure of matching quality may

improve the accuracy of a similarity measure and thus the performance of the

identification system. Generally, the idea is to weigh the contribution of a

feature match proportionally to its matching quality:

S({fk}test, {fj}temp)QUALITY
i =

∑

k

wk · vote(f test
k , i), (3.24)

where wk represents a quality measure. In appearance space, we can de-

scribe the accuracy of a feature match with respect to the appearance distance

d(f1, f2). As the accuracy decreases with increasing appearance distance, we

define

wACCURACY
k =

1

d(fk, fmin
k )α

, (3.25)

where α is a variable parameter. Motivated by the interpretation of the

distance ratio
d(fk,f

min
k )

d(fk ,f
2nd
k )

as a measure of ambiguity, we define another quality

function, taking the confidence of a feature match as the inverse ambiguity into
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account:

wCONFIDENCE
k =

d(fk, f
2nd
k )

d(fk, fmin
k )

(3.26)

Feature Distinctiveness

From a different perspective, we may define the distinctiveness of a feature f i
j

for template i as a function of all template features {{fj}temp
i }. We expect a

feature f i
j to be distinctive for a template i if its average minimum distance

to features of other templates is high. According to our matching strategy, we

take only features of other templates into account, which agree geometrically

with the currently inspected feature. Average minimum distance means, that

we compute for each template k other than i the minimum distance between the

feature f i
j and all features of template k and average these minimum distances.

This distinctiveness may be evaluated in the learning stage and thus can be

incorporated with no additional cost into the identification stage.

Eventually, any imaginable combination of these quality measures may in-

crease the performance of an identification system. However, we focus on sep-

arately evaluating those defined above, in order to gain some insight into the

particular impact each of them has on identification performance.

3.3 Combined Detection, Localization and

Identification

The detector returns a set of OCI geometries. For each such geometry we

have to decide individually, which subset of features extracted from the test

image shall be used for identification. In this section we propose two rather

contrary approaches. The loosely coupled system combination provides a large

amount of test features to the identification system for maximal identification

performance. This method addresses an application scenario in which a general

face detector is used as a preprocessing step for identification. The integrated

recognition model on the other hand, performs identification based on those

detector model features, which supported the OCI hypothesis returned by the

detector. With this rather tight system combination approach we intend to

investigate exploitable synergies assuming a scenario in which the detection and
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identification model are trained with images of the same subjects.

3.3.1 Loosely Coupled Detection and Identification

The template features for identification are stored in the database with their nor-

malized geometry relative to the OCI (as described in Section 3.1.1). Therefore,

we can easily determine a bounding box around a normalized OCI geometry,

which encapsulates all template features. This bounding box in conjunction

with a predicted OCI can be used to filter features extracted from a test im-

age for identification. Note that with this definition of the bounding box, we

keep all relevant information for identification, as features outside this bounding

box would not agree geometrically with template features and thus would be

unmatched anyway.

Consider a set of features fi together with their feature normalized relative

OCI geometry gi and a set of geometrical thresholds T g : (T pos, T scale, T angle),

which delimit the area of geometrical agreement (see Equation (3.8)). As a pre-

processing step, we need to convert the geometries gi, which currently represent

a mapping from a normalized feature to the OCI, into a relative feature position

to a normalized OCI. This procedure is described in detail in Section 3.1.1. Us-

ing the definition of geometrical agreement (Equation (3.8)), we can determine

the normalized bounding box BBi : (x
min
i , ymin

i , xmax
i , ymax

i ) in horizontal and

vertical direction about a feature position gi as follows:

xmin
i =xi − T pos · σi ymin

i = yi − T pos · σi

xmax
i =xi + T pos · σi ymax

i = yi + T pos · σi (3.27)

Based on the set of feature specific bounding boxes {BBi} corresponding

to all template features, we can now determine the bounding box BB MAX ,

which includes all positions normalized to the OCI, which are relevant for iden-

tification:

xmin
BB MAX = argmini(x

min
i ) ymin

BB MAX = argmini(y
min
i )

xmax
BB MAX = argmaxi(x

max
i ) ymax

BB MAX = argmaxi(y
max
i ) (3.28)
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For scenarios in which faces are likely to overlap or for other contexts in which

the maximal bounding box might not be the optimal choice regarding identifi-

cation performance, we can define smaller bounding boxes in order to maximize

the confidence with which the chosen features belong to the face correspond-

ing to the OCI prediction. We specifically propose the average bounding box

BBAV G:

xmin
BB AV G =

1

N
·

N∑

i=1

(xmin
i ) ymin

BB AV G =
1

N
·

N∑

i=1

(ymin
i )

xmax
BB AV G =

1

N
·

N∑

i=1

(xmax
i ) ymax

BB AV G =
1

N
·

N∑

i=1

(ymax
i ) (3.29)

For example, if faces in training images are not upright but the face region

is marked parallel to the horizontal and vertical axes, this average bounding

box is able to efficiently remove undesirable artifacts and features which are

incidentally inside this face region, due to the limitations of defining it.

Now, consider a set of test features {f test
k } with geometries gtestk in absolute

image dimensions. The detector localizes a face with OCI geometry go. Given a

normalized bounding box BB : (xmin, ymin, xmax, ymax), how can we determine

the subset of features of {f test
k } which are inside the bounding box BB around

the detected OCI geometry og? At first, we need to normalize the whole set of

test features with respect to the OCI geometry og as described in Section 3.1.1.

Based on the normalized geometries, we can then determine the normalized

feature location relative to the OCI. These locations can easily be compared to

the boundaries defined by bounding box BB and features located outside BB

may be discarded. At this point it would be more direct to normalize to og

instead of first normalizing the OCI to feature geometry and then determine

the relative feature location, but we chose this description in order to keep with

the geometrical relationships defined in Section 3.1.1.

3.3.2 Integrated Detection and Identification

Consider the case in which we are not interested in detecting general faces, but

simply want to detect faces of individuals we aim to identify. In this scenario it

might be sufficient or even beneficial with respect to identification accuracy, to
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perform identification exclusively based on features extracted from a test image,

which match detector model features.

Given a detected OCI geometry go, we propose to select the subset of features

derived from a test image, which support the hypothesis of this particular OCI

representing the presence of a face in the test image (see Section 3.1.3). This

set of features is then used for identification as described in Section 3.2.

Independent of the identification performance achieved with this method, it

has two great advantages over the loosely coupled model described above: For

describing faces as sets of SIFT features (templates) in the database, it is no

longer necessary to store the whole set of features extracted from a training im-

age. As we use for identification only test features which match detector model

features, all template features which do not agree with any detector model fea-

ture in terms of appearance and geometry may be discarded, which significantly

reduces the total number of template features. Furthermore, the computational

cost for recognition decreases, as filtering features within a bounding box is no

longer necessary and more importantly the number of pairwise feature matches

in the identification stage is reduced to a minimum.
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4 Evaluation

In this chapter we present evaluation results for the detection model, our identi-

fication model and the combined recognition model. Before, we introduce some

common performance measures and give some details on the data sets we use

for evaluation.

4.1 Performance Metrics

The most basic quantities for describing the quality of a machine learning al-

gorithm, on top of which more powerful performance measures will be defined,

are the numbers of true positive responses (TP), false positive responses (FP),

true negative responses (TN) and false negative responses (FN) of the system.

For a classification problem, a positive response of a system is any response in-

dicating that the inspected sample belongs to the class we are interested in. A

face detector aims to find faces in images. Hence, any face found is considered

as being a positive response. If at the specified location in the image really

is a face, this response is true (TP), otherwise the response is false (FP). If

a detector response indicates that at a specific location is no face present, its

response is negative. Again, this is either true (TN) or false (FN). Note that the

total number of possible false responses for a scale invariant face detector to a

specific test image is undefined, because scale (in contrast to pixel coordinates)

is not integer and possibly infinite, and even pixel coordinates may be defined

on subpixel (real numbered) level.
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These measures are combined to define higher classification statistics metrics:

False positive rate:
FP

nF
(4.1)

True positive rate/ Recall:
TP

nP
(4.2)

Precision:
TP

TP + FP
(4.3)

1-Precision:
FP

TP + FP
(4.4)

(4.5)

The terms nP and nF denote the total number of positive samples and neg-

ative samples, respectively, in the evaluation data set.

In general, different classes (e.g. object categories) overlap in feature space or

their perfect separation is unachievable due to model limitations. Thus, there

is a trade-off between false alarms and misclassified positive samples. Many

classification algorithms account for that with an adjustable parameter (e.g. an

acceptance threshold). The quality of such an algorithm can therefore not be

measured by a single value, but rather by a function describing this trade-off

for any possible value of the adjustable parameter.

One method for describing this trade-off is the Receiver Operating Char-

acteristics (ROC) curve. The ROC curve plots the true positive rate vs. the

false positive rate (see Figure 4.1). Any ROC curve starts at the origin and

ends at position (1, 1). A classifier, which randomly1 assigns a sample to any of

two object categories, corresponds to the diagonal line in such a diagram. The

ROC curve of an optimal classifier, which never falsely classifies any sample,

follows the ordinate to the top left corner and then goes straight along the top

of the diagram. Hence, the quality of a classification algorithm is considered to

be better the more its ROC curve approaches the top left corner (1, 0), which

represents the highest possibly attainable accuracy.

As we have seen above, this method is not applicable to evaluate the face

detector. In this context we are more interested in knowing how many of all

faces in the evaluation set are correctly detected and how many of its detections

are false.

A common way of expressing this relationship is plotting Recall vs. 1-

1assuming uniform distribution
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Figure 4.1: Example ROC curves: The performance of a classification system
is considered better the more the curve approaches the point (1,0)
representing no false classification

Precision. These plots allow for a similar graphical interpretation of the quality

of a detection system: The more the curve approaches the top left corner, the

better is the trade-off between correct detections and false alarms.

We will use these Recall vs. 1-Precision plots to describe the quality of our

face detector. As described in Section 3.1.3, the prior ratio p(face)
p(bg)

may be used

to influence the relative number of true vs. false detections. The performance of

our identification system will be measured by the true positive rate, as the model

contains no threshold, which explicitly models the trade-off between correct

and false identifications on the face level (on feature level, the distance ratio

threshold Tr (Section 3.2.2) represents this trade-off to some extent).

4.2 The FERET Database

The FERET database has been assembled as part of the Facial Recognition

Technology (FERET) program and is publicly available [PWHR98, PMRR00].

Its current version, the Color FERET database, has been released in October
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20032. The database contains 11338 facial color images of 994 subjects under

varying viewing conditions and all images have a size of 512 by 768 pixels. Image

files are in uncompressed PPM format. The collection of subjects is very diverse

in terms of age and ethnicity. The photographs have been recorded in a total

of 15 sessions over the course of three years. The images are neither aligned

nor cropped. Thus, faces are of different size and at different locations in the

image. Pictures are taken in front of a neutral background, but show a more or

less large part of upper body clothing. Some subjects wear glasses or jewelery

and some have facial hair.

The FERET program further defines an evaluation protocol to facilitate com-

parison of face recognition performance results reported by different authors.

The entire set of images is arranged in partitions, representing training and

evaluation sets for different face variations and viewing conditions. This sec-

tion presents the partitions and the associated nomenclature, which we use for

evaluation in Section 4.3.

The training set/ gallery fa consists of one near frontal face image of each

subject (994 images in total). The facial expression is not predetermined.

The partition fb consists of at most one other near frontal face image of each

subject showing a different facial expression than in the corresponding image in

fa(992 images in total).

All other near frontal face images of each subject are collected in the partition

dup1. This set consists of a total of 736 images. The image set dup2 is a

subset of dup1 containing 228 images taken at least 18 months later than the

corresponding gallery image.

The images in the set rb show faces with a pose angle of 15◦ to the subject’s

right and includes 321 images. A quick reference for all of these partitions

describing variation relative to the gallery set and number of images is provided

in Table 4.1.

The predecessor of the Color FERET database is the Gray FERET database.

As the name suggests, all images are gray level. They have a reduced resolution

of 256 by 384 pixels and have undergone lossy compression. From Gray FERET

to Color FERET, some subjects and the corresponding images as well as some

partitions have been removed. We make particular use of the fc partition in our

evaluation, which shows illumination variations to the gallery set.

2Official Homepage: http://face.nist.gov/colorferet

62



4.3 Evaluation Results

Partition #Images Variation

fa 994 training set
fb 992 expression
fc 194 illumination
dup1 736 duplicates
dup2 224 aging (at least 18 months)
rb 321 pose 15◦ to subjects right

Table 4.1: FERET image partitions used for evaluation

4.3 Evaluation Results

For our experiments we labeled all images used for training and testing with

the OCI as a vector from the base of the nose to the forehead. Additionally, we

manually defined for all images a paraxial rectangular region of interest (ROI)

enclosing the face region as shown in Figure 4.2. This ROI is used for detection

to separate face features from background features, and for identification to dis-

card features corresponding to clothing. As subjects wear the same clothes in

some test images as in the gallery, including these features artificially improves

identification performance. All images of the Color FERET database have been

converted to gray scale images. Besides that, we did not perform any normaliza-

tion (e.g. histogram equalization, rotation, rasterization or accurate alignment).

SIFT feature extraction is performed using David Lowe’s demo software3.

4.3.1 Detection

The detector model was trained with a subset of the Color FERET gallery set

(fa). We constructed another subset of fa containing 500 images and subjects,

which was used for testing. These sets did not share any subject. All features

inside the ROI are used as face model features, and all remaining features are

used as background features. The final clustering threshold T d for our agglom-

erative appearance clustering method was set to 0.5 (see Section 3.1.2). This

threshold produced in our experiments the maximum number of appearance

clusters consisting of at least two face model features, regardless the number

of features used for training. The baseline geometry thresholds were set to

T g : (T pos = 0.5, T σ = 1.5, T θ = π/2) as in [TA09]. Evaluation results are visu-

3Available at: http://www.cs.ubc.ca/ lowe/keypoints/
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Figure 4.2: Example of a labeled image: We mark in each image a rectangular
face region separating the face from the background and the OCI as
a vector from the base of the nose to the forehead.

alized with Recall vs. 1-Precision plots (see Section 4.1). For better visibility,

we plot only results for the top left quadrant, corresponding to ranges [0.5, 1.0]

for Recall and [0, 0.5] for 1-Precision.

We consider a positive response (i.e. an OCI geometry go) as true positive,

if go agrees geometrically with the ground truth OCI ggto , as defined in Section

3.1.1. For a series of OCI geometries (g1o , · · · , gNo ) returned by the detector,

which is in descending order of confidence γ(Hi), we count only the first positive

response as true positive if it agrees geometrically with ggto , and all other positive

responses regardless their geometrical agreement with ggto is considered as being

false positive. Thus, duplicate correct responses are handled as false positives.

Note that this method represents a conservative performance measure.

In order to determine the impact of the size of the training set on detector

performance, we constructed sets of 200, 300, 400 and 500 images, respectively.

Note that the number of face and background features does not grow linearly

with the number of images as shown in Table 4.2. Evaluation for all models has

been carried out on the same test set containing 500 images. Results are show

in Figure 4.3. We can see that besides the low number of training features,
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Images face Features bg Features face Model Features

200 39687 102184 948
300 51792 130169 1074
400 66286 203833 1333
500 94488 243806 1615
994 214958 453019 2701

Table 4.2: Detector model training sets

even the smallest model consisting of less than 1000 features performs quite

well. As we would expect, detection performance increases with the number

of training features. The largest performance boost is obtained between 400

and 500 training images as with the former, the dent shared by the latter and

weaker models at about 80% recall and 90% precision, disappeared. This might

indicate, that the number of training features used to train the model from 500

images, is about the minimum number to obtain a stable face model with our

method.

Towes and Arbel report a similar performance for their OCI based face detec-

tor in [TA06]. As they do not evaluate their detector on the FERET database

but on a non-specified number of images from the Internet and do not state ex-

plicitly, how they handle correct duplicate detection, we can just assume that the

performance of our detector is comparable. In [TA09], the authors report eval-

uation results on the CMU profile database, training the model as well with 500

images from the FERET database. In these more complex scenarios including

multiple (partially occluded) faces per image and a high amount of background

clutter, their detection model achieves about 40% recall at 18% precision. As

the focus of this thesis lies on the combination of detection and identification,

and large scale databases with complex scenes and multiple sample images per

subject are to our knowledge unavailable to date, we leave this to future work.

Since images in the FERET database show only a single face, we measured the

performance of the detector responding with a maximum of one OCI location

in Figure 4.4. It can be seen that performance significantly increases by about

5% to 90% recall at 90% precision. This may be due to the fact that we count

duplicate correct localizations as false positives.

With respect to a combined detection and identification system which is

trained on the same data set, we train our detection model with the full FERET

gallery set fa. Details on feature counts are presented in Table 4.2. For evalua-
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Figure 4.3: Detection performance with varying number of training images

Figure 4.4: Detector performance depending on whether multiple responses or
just a single detection response is allowed. Detector model fa-500
tested the remaining images of fa
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Figure 4.5: Detection model trained with the full gallery set fa and evaluated
on fb.

tion, we used the test set on expression variations fb. Figure 4.5 shows evalua-

tion results for the cases allowing multiple and just a single detector response.

In the case of multiple responses, the we achieve 89% recall with a precision of

89 %. Allowing just a single detector response, the maximum recall of 92% is

obtained with 93 % precision.

The results presented in this section show, that face detection and localization

based on SIFT features with our method in these rather simple scenarios is

accomplished with high accuracy. The detection model trained with 500 images

is capable of correctly detecting 85-90% of all test images with more than 90%

precision. A correct OCI is on average detected based on less than ten SIFT

features. An example detection result showing the detected OCI and the image

features supporting this particular hypothesis is shown in Fig. 4.6. In the

following section we present the evaluation results on our identification model

before combining them to a full face recognition model.
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Figure 4.6: Example detection: The image shows a correctly detected OCI and
the features supporting this OCI hypothesis. In this case the detec-
tor correctly predicted the OCI location based on four SIFT features

4.3.2 Identification

We test the identification model using the labeled ROI and OCI in training

and test images. All features of a training image inside the ROI are normalized

to the OCI geometry (see Section 3.1.1) and stored in the database. From

any test image, we extract solely features inside the ROI and normalize their

geometries to the OCI. Then, we compute the similarity measures between the

set of test features and all templates, and consider the template with the highest

similarity as being present in the image. We start by using the simple voting

scheme (introduced in Section 3.2.2) to compute similarity measures.

With this measure of similarity, the only variable parameters are the distance

ratio threshold Tr, which decides which feature matches are unique enough to

vote for a particular subject, and the geometrical thresholds T g : (T pos, T σ, T θ),

which define the range of geometries considered to agree with a particular ge-

ometry in 2D position, scale and angle. For training, we used the full gallery

set fa. Evaluation on illumination variations (fc) is carried out on the Gray

FERET database. In this case we did not use the full gallery set fa, but only
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fb fc dup1 dup2 rb Total

Tr = 0.6 95.87 59.79 44.29 19.74 38.63 63.21
Tr = 0.7 97.28 79.38 50.04 30.70 47.04 69.13
Tr = 0.8 97.56 87.63 56.79 44.74 51.75 73.81
Tr = 0.9 98.08 94.85 60.60 49.56 59.81 77.21
Tr = 1.0 98.89 97.42 60.87 54.39 66.67 79.15
Min+2nd 98.89 97.42 60.73 52.19 66.98 78.95
Min+(1.25 · d(Min)) 97.08 92.78 54.35 42.98 61.99 74.46

Table 4.3: Impact of distance ratio threshold Tr on identification performance
(true positive rate in %)

the subset containing individuals included in the test set fc (194 individuals

with one image per subject). Besides evaluation results on particular test sets,

we present a total identification performance. This total performance is the

average performance on all test sets, where the contribution of the result on a

particular test set is weighted by the number of images it contains.

The effects of the distance ratio threshold on identification performance are

shown in Table 4.3. The results show a monotonic increase of identification

performance with growing threshold values. Note that a threshold Tr = 1 corre-

sponds to accepting any best feature match regardless the appearance distance

to the second best match. This may be caused by the fact that the appearance

variance of a SIFT feature between several images of the same face overlaps

with the appearance variance across individuals. Based on these results, we

tested some additional similarity measures, letting a test feature not only vote

for a single but for multiple templates in the database. We specifically explored

the performance of a similarity measure Min+2nd, where a feature votes for

the template which best matches the test feature as well as for the second best

feature match. In the similarity measure Min+(x · d(Min)), a feature votes

for any template, for which the distance of the best feature match is smaller

than x times the distance to the absolute best feature match. As shown in

Table 4.3 though, these similarity measures did not yield a higher identification

performance.

These first results also give an insight into the difficulties involved with dif-

ferent viewing conditions. Expression variations seem to be the most simple

kind of variations. Our identification system shows for these variations with

respect to changing distance ratio thresholds a high stability in identification
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Tpos Tσ Tθ fb fc dup1 dup2 rb Total

0.5 1.5 π / 6 98.89 97.42 60.87 54.39 66.67 79.15
[0.3] 1.5 π / 6 98.08 93.81 61.28 55.26 63.86 78.39
[0.7] 1.5 π / 6 98.89 96.39 60.73 52.19 65.42 78.59

0.5 [1.3] π / 6 98.89 95.88 61.55 53.95 66.66 79.20
0.5 [1.7] π / 6 98.89 97.42 60.33 53.51 66.36 78.88

0.5 1.5 [π / 8] 98.79 97.42 60.46 53.95 66.46 78.92
0.5 1.5 [π / 4] 98.89 96.91 60.46 53.93 96.91 78.71

Table 4.4: Sensitivity of identification performance (true positive rate in %) to
changes in the geometrical thresholds. Thresholds differing from the
baseline parameters in the first row are put in square brackets.

performance. Results on illumination variations suggest a similar level of dif-

ficulty, although identification performance strongly varies with changes in the

distance threshold. The effects of aging on face appearance seem to be rather

challenging, as identification performance on the data sets dup1 and especially

dup2 is comparably low. The moderate performance on face rotations in depth

(rb) might be due to a high sensitivity of SIFT descriptors to these variations,

but also to our geometry based potential matching feature selection method.

Therefore, we systematically evaluate the sensitivity of our face identification

model to changes in the geometrical thresholds. Table 4.4 shows the results

obtained by changing either of the thresholds T pos, T σ and T θ, corresponding

to 2D position, scale and angle, respectively. The first row shows the results

for our baseline thresholds, and for all other experiments the changed threshold

is put in square brackets for better readability. Based on these evaluations, we

decide to keep the baseline thresholds for future experiments. Although a scale

threshold of T σ = 1.3 yields a slightly better identification performance in total,

this low threshold is expected to be too restrictive for our detection model and

thus the combination of both models.

Comparison of Similarity Measures

In Section 3.2.2 we proposed a rather wide range of similarity measures incor-

porating various factors such as the number of template features per individual

(NORMALIZED), the appearance distance between test and template feature

(ACCURACY), the distance ratio of best match vs. second best match (CON-

FIDENCE) and the template feature distinctiveness, defined as the average
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fb fc dup1 dup2 rb Total

VOTING 98.89 97.42 60.87 54.39 66.67 79.15
NORMALIZED 98.89 97.42 53.40 35.96 54.52 73.65
ACCURACY, α = 1/2 98.89 97.94 59.92 52.63 61.99 78.15
ACCURACY, α = 1 98.69 96.90 57.47 47.37 58.88 76.36
ACCURACY, α = 2 93.55 87.11 42.57 18.85 38.94 63.87
CONFIDENCE 98.89 97.94 60.46 53.07 66.38 78.92
DISTINCTIVENESS 98.67 95.36 59.79 51.32 66.36 78.26

Table 4.5: Identification performance (true positive rate in %) using various sim-
ilarity measures.

minimum distance to features of other templates (DISTINCTIVENESS). The

evaluation results of our identification model using these similarity measures

are presented in Table 4.5. Surprisingly, none of these similarity measures beats

the performance of the simple voting scheme. Normalizing the similarity mea-

sure by the number of template features might be disadvantageous, because

for each template a variable fraction of features stored in the database might

be unsuitable for uniquely identifying a particular individual. Either because

a feature is not distinct enough, or because it is unlikely to appear in other

images of the same subject (e.g. background clutter). The matching accuracy

as defined might not actually be an appropriate measure to express the quality

of a feature match. The same might be the case for feature distinctiveness.

Incorporating the distance ratio into the similarity estimation yields promising

results, although the linear contribution of this quality measure did not improve

identification performance.

Comparison to Other Identification Models

In the literature, many face identification methods have been evaluated on the

FERET database. Thus, we choose to evaluate our model on this particular

database, in order to compare our performance results with those reported by

other authors.

Table 4.6 compares our identification results (SIFT OCI ) with other SIFT

based identification methods (SIFT GRID and SIFT CLUSTER), the local fea-

ture based methods Elastic Bunch Graph Matching (EBGM) and Local Binary

Patterns (LBP) and the holistic Fisherface approach. The evaluation results

for all methods (except ours) are taken from [LMT+07]. For the evaluation
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Methods fb fc dup1 dup2 Total

Fisherface [BHK97] 94 73 55 31 72
EBGM [WFKvdM97] 90 42 46 24 64
LBP [AHP04] 97 79 66 64 81

SIFT GRID [BLGT06] 94 35 53 36 69
SIFT CLUSTER [LMT+07] 97 47 61 53 76
SIFT OCI 99 92 61 54 81

Table 4.6: Comparison of the performance (true positive rate in %) of our
face identification model (SIFT OCI) with other methods for face
identification.

of those methods, all images have been normalized (using histogram equaliza-

tion [AR05]), aligned (both centers of the eyes are on a common line), cropped

(showing only the face) and rasterized (scaled to a fix resolution). Note that

the authors used the original Gray FERET database for all experiments, while

we use - except for experiments on illumination variations, the Color FERET

database for evaluation. However, as there is little difference between the Color

FERET and the Gray FERET database (see Section 4.2), we consider the eval-

uation results as comparable. While we used above for the evaluation of illumi-

nation variations (partition fc of the Gray FERET database) only the subset of

the gallery fa corresponding to subjects in fc, we now use the full gallery fa to

construct our database for better comparison.

The results in Table 4.6 show, that our identification model is very competi-

tive. While LBP performs better on the test sets dup1 and dup2, the proposed

method shows a better identification performance on expression variations (fb)

and achieves outstanding results on illumination variations fc. Additionally, our

identification model outperforms both of the other SIFT based methods.

4.3.3 Recognition - Combined Detection and Identification

We evaluate the combined recognition model using two different sets of model

features for the face detector: The set fa-full contains all detector model fea-

tures derived from model training (Section 3.1.2) with the whole FERET gallery

set fa. The face model set fa-500 contains all model features learned from a

subset of 500 images of fa. In combination with the detection model fa-full,

we use the gallery set fa to create the database of templates for identification.
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Thus, detection and identification models are based on the same set of features.

In combination with the detector model feature set fa-500, we construct the

database for identification from the remaining images of fa, which have not

been used to train the detector model fa-500. As opposed to the former config-

uration, this latter setting represents a scenario, in which we use a general face

detector (not particularly trained to detect the subjects we want to identify) as

a preprocessing module for identification.

There are several performance criteria we measure in our experiments: We

consider a face which has been correctly detected and correctly identified as a

true positive response of the combined system. As all subjects in the test set

are known to the identification system, the total number of possible positive

responses equals the number of faces in the test set. We denote the fraction

of correctly detected and correctly identified faces of the total number of faces

in the test set as ID/Exp.. Additionally, we measure the fraction of correctly

detected and correctly identified faces of all correctly detected faces, which we

denote as ID/Det.. This measure indicates the portion of the overall system

performance achieved by the identification system. We continue to describe

the detector performance in terms of recall and precision. Note that for the

evaluation of the combined system, the acceptance threshold of the detector is

set to a fixed value, and thus the detector performance is described by a pair

of values (recall and precision for a specific threshold) rather than a curve as in

Section 4.3.1.

Loose Coupling

The loosely coupled system combination approach as introduced in Section 3.3.1

uses the OCI returned by the detector to define a bounding box and selects all

features from the test image, which are situated inside this bounding box, for

identification. We proposed two types of bounding boxes - namely BB MAX

and BB AVG.

Bounding Boxes: In a first comparative evaluation we attempt to determine

the type of bounding box, which achieves the better performance, using the

performance criteria introduced above. For evaluation, we used the model com-

binations defined above: detector model fa-full, for which both subsystems are

trained with the data set fa, and the detector model fa-500, which is combined
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Bounding Box Model ID/ Det. ID/ Exp.

BB MAX fa-500 89.98 80.8
BB AVG fa-500 98.44 88.4

BB MAX fa-full 93.39 85.48
BB AVG fa-full 98.5 87.2

Table 4.7: Performance of the combined system using different types of bound-
ing boxes, evaluated on two different detector models.

with an identification model trained with the subset of images of fa, which have

not been used for detector training. For testing the model fa-full, we used the

whole set fb, while the model fa-500 was tested on the subset of fb correspond-

ing to the subjects, which are known to the identification system. The results

of these experiments are presented in Table 4.7. As the choice of bounding box

does not influence the detector performance, we did not present precision and

recall of the detector.

The results clearly show, that the average bounding box BB AVG of tem-

plate features is better suited for our system combination than the maximum

bounding box BB MAX enclosing all features of the database. This may be

due to the fact that the maximum bounding box is too wide and thus includes

too many background features for identification. Manually labeled rectangular

face regions (ROI) are not defined relative to the labeled OCI’s orientation, but

along the horizontal and vertical axes of the image. Thus, if in a training image

the relative orientation of the OCI to the y-axis approaches 45◦, the resulting

bounding box dimensions represent the diagonal of the face4, and not its width

and its hight. The average bounding box is more robust to this kind of artifacts.

Therefore, we use the bounding box BB AVG for all other experiments.

Impact of Detector Acceptance Threshold on Identification Performance:

In a second experiment, we explore the impact of the detector acceptance thresh-

old on the identification performance of the combined system. Recall that iden-

tification performance is described as the fraction of correctly detected and cor-

rectly identified faces of all correctly detected faces (ID/Det.). We use the same

configurations of training and test sets as above and the average bounding box

BB AVG for feature selection. For each model, we choose an acceptance thresh-

4assuming a squared bounding box for simplification
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Model Precision Recall ID/ Det.

fa-500 24.5 94.5 98.5
fa-500 88.2 86.4 98.6
fa-full 29.2 96.0 98.3
fa-full 88.9 88.5 98.5

Table 4.8: Performance of the combined system using different acceptance
thresholds for detection

old value with very low precision and the threshold value corresponding to the

optimal trade-off between false positive and false negative detector responses.

The results presented in Table 4.8 show, that the identification performance on

correctly detected faces does practically not depend on this variable parameter

of the detection system. If the acceptance threshold had an effect on the iden-

tification performance in the way that faces detected with high confidence are

more likely to be correctly identified, this would indicate that faces which are

easier to detect would also be easier to identify based on this detection. Either

because faces showing features used for detection are more likely to be identi-

fied, or because the OCI localization of a face detected with high confidence is

more accurate.

Localization Accuracy: In order to evaluate the accuracy of the OCI local-

ization, we compare the identification performance of detected faces using the

detected OCI with the identification performance of these faces using the labeled

ground truth OCI (Table 4.9). If an OCI was badly localized, corresponding fea-

tures between two images would not agree geometrically and thus would not be

matched in the identification stage (as described in Section 3.2.1. Training sets,

test sets, the bounding box type and the detector acceptance thresholds are

chosen as above. The results are somewhat contradictory. For the model fa-

500, the performance (ID/Det.) of identification based on the labeled OCI is

slightly worse than using the OCI predicted by the detector. This may indicate

that the predicted OCI defines a better geometrical correspondence between

template features and features in the test image. On the other hand, using

the model fa-full, we observe that the predicted OCI performs worse than its

manually labeled counterpart, as we would expect. However, the performance

differences between identification based on the labeled OCIs and predicted OCIs

are so small, that we may conclude that the detector localizes an OCI with high
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Model Precision Recall Detected OCI Ground Truth OCI

fa-500 24.5 94.5 98.5 98.3
fa-500 88.2 86.4 98.6 98.4
fa-full 29.2 96.0 98.3 98.8
fa-full 88.9 88.5 98.5 99.0

Table 4.9: Comparison of identification performance (ID/Det.) based on the
detected OCI with identification based on labeled ground truth OCI

Test Set Precision Recall ID/Det ID/ Exp.

fb 90.71 89.80 98.44 88.40
dup1 83.37 86.37 70.67 61.04
dup2 84.76 84.76 56.18 47.62
rb 66.78 65.26 58.21 37.99

Table 4.10: Performance (in %) of the loosely coupled recognition model under
various viewing conditions (detection model fa-500)

accuracy.

While we focused in the experiments above on the identification performance

in case a face has been correctly detected, we now evaluate the performance of

the combined recognition system under various viewing conditions. Therefore,

we choose the detector acceptance threshold, detector models and identification

gallery images as above. We test this system configuration for the model fa-

full on the whole test sets fb, dup1, dup2 and rb. In combination with the

detector model fa-500, we use for evaluation the subsets corresponding to the

images of the gallery set, which have not been used for detector model training

and form the database for the identification system. The evaluation results are

presented in Tables 4.11 and 4.10. With respect to detector performance, we

see that precision and racall highly depend on the test set. The identification

performance (ID/Det.) is comparable to the results achieved with the stand-

alone face identification system. Although the model fa-500 shows a better

identification performance on the dup1 test set, note that these results are not

comparable as this combined system is only evaluated on a subset of dup1. By

comparing recall, the fraction of correctly identified to correctly detected faces

and the fraction of correctly identified faces to all experiments, we see that the

lower recognition rate is almost exclusively due to the detection rate. Thus, the

loose system combination approach may be considered as being very effective,
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4.3 Evaluation Results

Test Set Precision Recall ID/Det. ID/ Exp.

fb 92.84 91.53 98.35 90.02
dup1 89.79 87.64 59.07 51.77
dup2 84.07 83.33 51.59 42.98
rb 76.07 72.27 66.38 47.98

Table 4.11: Performance (in %) of the loosely coupled recognition model under
various viewing conditions (detection model fa-full)

as the performance decrease in comparison with pure identification is not caused

by the system combination but by the rather poor detection performance.

Integrated Detection and Identification

The tight system combination approach as described in Section 3.3.2 uses only

those test features for identification, which correspond to detector model fea-

tures and support the detected OCI hypothesis. Therefore, the detector needs

to be slightly modified. In addition to returning a single or multiple OCIs, the

detector now returns for each detected OCI the corresponding test features. As

depicted in Figure 4.6, the number of these features is rather small. Therefore

it is rather optimistic to image that this model can accurately identify a subject

out of more than 500 subjects in the database, based on 5-10 features. Never-

theless, we evaluated this approach to gain some insight into the distinctiveness

of SIFT descriptors. In this context we performed two series of experiments.

The first (results in Table 4.12) uses the fa-full detection model and is eval-

uated on the whole test sets fb, dup1, dup2 and rb. The second series of

experiments was conducted using the fa-500 detection model and was evalu-

ated on the subsets of fb, dup1, dup2 and rb, which do not contain any subject

which has been involved in detector training. These results are shown in Table

4.12. In general, these results are not as bad as expected: this tightly coupled

approach using only an extremely small amount of features for identification,

still identifies about 70% of the detected subjects of test set fb correctly! On the

other test sets however, the identification performance (ID/Det.) and especially

the recognition performance (ID/Exp.) are very low. Another meaningfull ob-

servation is that the fa-500 model, which does not use the same subjects for

training the detector and identification, performs significantly better. Note that

although the results are not directly comparable as the test sets are different,
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4 Evaluation

Test Set Precision Recall ID/Det ID/ Exp.

fb 92.84 91.53 69.93 64.01
dup1 89.21 87.64 19.38 16.98
dup2 84.07 83.33 7.37 6.14
rb 76.07 72.27 19.40 14.02

Table 4.12: Performance (in %) of the integrated recognition model under var-
ious viewing conditions (detection model fa-full)

Test Set Precision Recall ID/Det ID/ Exp.

fb 90.71 89.80 69.49 62.4
dup1 83.37 86.37 28.00 24.18
dup2 84.76 84.76 13.48 11.43
rb 66.78 65.26 22.31 17.53

Table 4.13: Performance (in %) of the integrated recognition model under var-
ious viewing conditions (detection model fa-500)

this may indicate that a general face detector - trained on arbitrary faces - is bet-

ter suited to be used in combination with this integrated recognition scheme. A

possible explanation for this observation is the following: Model features trained

for detection are supported by at least two features of the training set. If we

use the same training set for identification, and the detector model features are

chosen to be non-distinctive for a particular subject in this training set, it is

rather unsurprising that this approach may yield a lower recognition rate.
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5 Conclusion

In this diploma thesis, we designed and implemented a full face recognition

system based on SIFT descriptors and proved the feasibility of this approach.

We adapted the learning procedure of an existing face detection model using

an agglomerative clustering approach, which requires less computation time.

The experiments carried out on the FERET database showed that this model

achieves high detection rates localizing a face with high accuracy and with a low

number of false detections under these rather constraint conditions. Evaluation

on more complex data sets may be necessary to further explore the potential of

this detection model.

For face identification, we propose a new model using SIFT descriptors and the

Object Class Invariant. We developed a new feature matching strategy based

on this OCI, which further reduces the number of potential feature matches.

This feature selection strategy does not only incorporate the 2D image posi-

tion but also the scale and the angle of a feature, which further reduces the

number of false correspondences. We systematically evaluated various similar-

ity measures, with the surprising result that the simple voting scheme achieves

the best identification rates. The proposed face identification method showed to

be competitive with other face identification models such as SIFT-Cluster and

Local Binary Patterns. Furthermore, the OCI based identification model does

not require preprocessing steps such as histogram equalization or rasterization.

Labeling the OCI in an image is sufficient to identify faces invariant to scale

and in-plane rotation.

For the combination of face detection and identification, we experimented with

two different approaches: The loose coupling technique uses OCI information

provided by the detector to define a scale and orientation invariant bounding

box, based on which features for face identification are selected. This tech-

nique does not additionally decrease identification performance and may thus

be considered as being well suited for the combination of the proposed models.
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5 Conclusion

The integrated detection and identification model uses only a very small num-

ber of features for identification. However, this approach showed an adequate

recognition performance under variation of facial expression.
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